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14.  ABSTRACT (Full) 

This report summarizes the research and activities under the Revolutionary Automatic Target Recognition and 
Sensor Research (RASER) Grant FA8650-04-1-1719 on the topic of Feature-Enhanced, Model-Based Sparse 
Aperture Imaging. This research has been performed at the Massachusetts Institute of Technology. The primary 
researchers who have led this research program are Dr. Müjdat Çetin, Prof. Alan Willsky, and Dr. John Fisher.  
This project has been motivated by a number of emerging military applications where we are faced with sparse 
apertures. Examples include wide-angle imaging, foliage penetration radar, bistatic imaging, and passive radar 
imaging. While the possibility of exploiting such rich sensor data presents remarkable opportunities for 
surveillance, image formation and visualization from sparse aperture data poses significant challenges. The focus 
of our research effort has been to meet these challenges and develop principled and practical sparse aperture 
imaging techniques which generate enhanced imagery facilitating visual or automatic interpretation of the 
underlying scenes. 
In this report, we provide a picture of the activities and progress that have occurred in this project. In particular, we 
include both basic factual information on personnel, publications, and interactions, as well as a brief description of 
our research activities and how they relate to the statement of work included in our proposal. 



1 INTRODUCTION

This report summarizes the research and activities under the Revolutionary Automatic Target
Recognition and Sensor Research (RASER) Grant on the topic of Feature-Enhanced, Model-
Based Sparse Aperture Imaging. This project started on October 1, 2004, and ended on February
29, 2008. During he course of this project, we believe that we have accomplished our objectives
by making progress in various dimensions:

(i) We have developed new algorithms in line with the statement of work in our proposal.

(ii) We have defined student theses topics of direct relevance for this project. Four different
students in three different institutions have made significant contributions to the project.

(iii) We have established collaborations and interactions with various research groups, which
contributed greatly to the wealth of ideas involved in our work.

(iv) We have made an effort to present our work in various venues to assure its impact. In
particular, we have made sure to interact with many colleagues from AFRL, and made
them aware of our work.

(v) Towards the end of this project, we got involved in a new MURI grant funded by AFOSR
that is well-aligned with the goals of this research effort.

In this report, we provide brief descriptions of our activities and research, and refer the reader
to the publications listed at the end of the report.

1.1 Statement of Work

The main goal of our research effort is to develop principled and practical sparse aperture imaging
techniques which generate enhanced imagery facilitating visual or automatic interpretation of
the underlying scenes. Our starting point and foundation in this effort is the recently-developed
feature-enhanced imaging framework. Our proposal included the following statement of work,
under full-level of funding:

• Task 1: Adapt and demonstrate the effectiveness of feature-enhanced imaging in a variety
of 2D/3D sparse aperture imaging scenarios and modalities. Perform quantitative analysis
of the formed imagery, and explore the impact of various sensing factors on imaging and
illuminate the resulting tradeoffs.

• Task 2: Develop techniques for automatic selection of parameters involved in feature-
enhanced sparse aperture imaging.

• Task 3: Develop image formation strategies that take into account the anisotropic nature
of the scatterers.

• Task 4: Develop extensions of feature-enhanced imaging to make it robust to errors in
sensing model parameters.

• Task 5: Explore the enhancement of various kinds of features of importance in sparse
aperture imaging applications.

RoushRV
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• Task 6: Consider extension of feature-enhanced imaging to problems involving non-linear
scattering models.

• Task 7: Extend feature-enhanced imaging to incorporate data from multiple sensors with
imperfect knowledge of the sensor model parameters.

• Task 8: Consider visualization strategies that preserve the high-dimensional information
inherent in the reconstructed scenes.

• Task 9: Develop procedures for decision-oriented sparse aperture imaging, where certain
aspects of the image formation algorithm are driven by feedback from the final decision-
making objectives.

We have also set priorities in this statement of work, as a function of the available funding
level, which we paste below:

• Option 3 [Funding level: $300,000]: With this cost option (which is the actual level
of support we have received in this project), our research agenda will be as follows.
Regarding the work in Task 1, we will mostly focus on 2D radar imaging applications and
evaluation of the formed imagery. We will perform the tasks in Task 2 and Task 4. Finally,
we would also be interested in carrying out at least some aspects of the research described
in Task 3.

• Option 2 [Funding level: $375,000]: With this cost option, our research agenda will include
the following items in addition to those described under Option 3. We will consider a
variety of 2D imaging modalities in Task 1. We will perform the tasks described in Task
3, as well as those in Task 5.

• Option 1 [Funding level: $450,000]: With this cost option, our research agenda will include
the following items in addition to those described under Option 2. For the work in Task 1,
we will be able to consider 2.5-3D imaging problems for a variety of modalities. This will
benefit from our interaction with AFRL researchers, and hopefully from the use of some of
the computational facilities at AFRL. This option will also let us spend some time on the
work described in Tasks 6-9 as well.

Given that our funding has stayed at the Option 3 level, we have focused on Tasks 1,2,3,4,
and also made some contributions to Task 5. However, thanks to the AFOSR MURI effort we
have recently got involved in, we are in the process of formulating research problems to address
issues under Task 9 as well.

1.2 Personnel and Data

The primary researchers involved in this research program are Dr. Müjdat Çetin, Prof. Alan
Willsky, and Dr. John Fisher. A graduate student, Kush Varshney, has been directly supported
by this project. Three students have contributed to this project without receiving direct support.
When the project started Müjdat Çetin was a full-time Research Scientist at MIT. In September
2005, he took a faculty position at Sabancı University, İstanbul, Turkey. However, he continued
to honor his commitment to this project by: 1) continuing to be affiliated officially with MIT
as a Research Affiliate, 2) continuing to be involved in supervising graduate student work on
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this project, 3) continuing his collaborative work (e.g. with Ohio State and Boston University)
that is relevant for this project, 4) being present at MIT in the summers to conduct research,
5) initiating research at Sabancı University that is related to this effort, without receiving direct
support.

Our collaborators, who have contributed to this project without receiving direct support in-
clude Prof. Randy Moses (The Ohio State University), Prof. W. Clem Karl (Boston University),
Dr. Rajan Bhalla (SAIC), Dr. Thomas Kragh (Lincoln Laboratory), Dr. Eugene Lavely (BAE
Systems Advanced Information Technologies), and Prof. Aaron Lanterman (Georgia Tech).

Throughout our work, we have made extensive use of the “Backhoe Data Dome,” distributed
by AFRL, as part of the VISUAL-D program. We have also used some XPATCH data provided
to us by SAIC. We have also obtained the ”2D/3D Imaging GOTCHA Challenge Problem”
public release data for use in some pieces of our work.

2 RESEARCH ACCOMPLISHMENTS

2.1 Methods for Imaging from Wide-Angle, Sparse-Aperture Data

As mentioned in our statement of work, our starting point for tackling sparse aperture imaging
problems has been the feature-enhanced imaging framework. Due to the observation model-based
nature of this framework, it has been possible to extend and apply it to various sparse aperture
imaging scenarios. One of our major efforts along this line has been our collaborative work with
Prof. Randy Moses of the Ohio State University on wide-angle synthetic aperture radar (SAR)
imaging.

This work has its center of gravity in Task 1 and Task 3. We have developed a subaperture-
based imaging approach for wide-angle SAR where in each subaperture we perform feature-
enhanced imaging and then put together all these subaperture images into a composite image
for visualization. This approach addresses some of the limitations of conventional, polar format
imaging in the context of wide-angle data. Polar format algorithm works on the assumption that
all scatterers in the scene persist through all observation angles, which does not hold in wide
angular apertures (e.g. 100 degrees). As a result, scatterers that persist only in a small angular
range are suppressed. Yet, these scatterers can represent important features of the scene. Our
approach alleviates this problem and preserves scatterers with short persistence. In addition, due
to its model-based nature, our approach provides much better robustness in the case of aperture
omissions (in the frequency band or in the angle band). Since we form subaperture images using
feature-enhanced imaging, we also improve the spatial resolvability of scatterers. Finally, our
composite images carry not only reflectivity information, but also information on the direction
of the maximum scattering response for each scatterer. This provides an additional feature for
tasks such as automatic target recognition (ATR). We have presented our results on wide-angle
SAR imaging from partial-aperture data with frequency-band omissions at the Algorithms for
SAR Imagery Conference, part of the SPIE Defense and Security Symposium [1]. We are in the
process of preparing and submitting a journal paper describing this work [2]. We are also happy
to observe that a number of papers presented at the Algorithms for SAR Imagery Conference in
recent years were using or building upon our work, which is a good indication that our research
has started to create an impact on the research community.

Another line of work on which we have started to interact with Randy Moses involves feature-
enhanced interferometric SAR imaging from data with frequency-band omissions. Prof. Moses
and his students have developed an IFSAR imaging technique built upon our feature-enhanced
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imaging framework. We are discussing certain ways to extend that work. Prof. Moses and his
team have also started processing the GOTCHA data, and in that effort utilized our feature-
enhanced imaging algorithm as well. We are also interacting on new ways to process that data.

In addition to wide-angle SAR, we have explored other sparse-aperture imaging scenarios
as well. One example is passive radar imaging. In collaboration with Prof. Aaron Lanterman
from Georgia Tech, we have developed a region-enhanced, sparse-aperture passive radar imag-
ing technique, and have demonstrated its advantages over conventional imaging. Our work on
sparse aperture passive radar imaging has been published in IEE Proceedings Radar, Sonar &
Navigation, Special Issue on Passive Radar Systems [3].

2.2 Methods for Joint Imaging and Anisotropy Characterization

Kush Varshney, the only student receiving direct support from this grant, completed his Master’s
thesis on joint image formation and anisotropy characterization in wide-angle SAR [4]. We are
not attaching the thesis to this report due to its large size, however the thesis can be accessed
through the following URL:

http://www.mit.edu/~krv/pubs/krvarshney sm.pdf

This work mainly focuses on Task 1, Task 3, Task 5, and has some connections to Task 9.
The main idea is to perform joint anisotropy characterization and imaging (reflectivity esti-
mation), by posing both problems as sparse signal representation problems using overcomplete
dictionaries. Whereas a conventional radar image produces a complex-valued scalar reflectivity
for each scatterer, our approach acknowledges that scattering varies with angle, and produces
a scattering function for each scatterer. From this information, one can extract features such
as scattering direction and angular scattering extent for each scatterer in the scene. This not
only makes the imaging (reflectivity estimation) process in the presence of anisotropic scattering
more accurate, but it also produces features that are not present in conventional images and that
can be useful for automatic target recognition (ATR). One general principle in previous work on
the anisotropy problem has been to divide the full wide-angle aperture into smaller subapertures
and form a sequence of subaperture images with inherently reduced cross-range resolution for
use in further processing. Another general principle has been to develop parametric models for
angle-dependent scattering behavior. The proposed methodology does not suffer a reduction
in resolution because the entire available aperture is used and is more flexible than parametric
models. The proposed framework solves for multiple spatial locations jointly, ameliorating the
ill-effects of close proximity neighboring scatterers. A graph-structured interpretation leading
towards novel approximate algorithms to solve the inverse problem is developed. These algo-
rithms, having reduced memory requirements, may well find application in a wide variety of
sparse signal representation settings beyond the specific problem of anisotropy in SAR. The first
conference paper on this work was presented at the Algorithms for SAR Imagery Conference in
April 2006. The results show great promise in characterizing complicated anisotropic scattering
behaviors likely to be encountered in wide-angle imaging applications.

On top of the basic work included in that paper, we made some further progress. In particular
we achieved two extensions of the basic framework in [5], and published that work in [6] in June
2006. The first of these extensions involves migratory scattering centers. Certain scattering
mechanisms, such as tophats and cylinders, appear to migrate or move in their spatial location
as a function of aspect angle with wide-angle apertures. This type of scattering, which has
not been given much heed in past work, is well-incorporated into our overcomplete dictionary
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formulation. In the first part of [6], we present an extension of our overcomplete dictionary for
characterizing anisotropy to account for migratory scattering. The second extension is based
on the interesting relationship between anisotropy and physical extent in the spatial domain.
Scattering response over only a very small range of aspect angles, known as glint or flash, arises
from long, flat plates, and the thinner the anisotropic response, the longer the spatial extent of
the plate. The aspect angle of the glint is also the orientation of the object in space. In the second
part of [6], utilizing Hough transform properties, we introduce new regularization terms to favor
solutions that concentrate the representation of glint anisotropy across a spatially distributed area
into a single scatterer. Through such extensions to the sparsifying regularization cost function,
certain object-level preferences are essentially encoded within the image formation process. This
is a principled attempt towards the objective of decision-directed imaging, exploiting high-level
information in front-end signal processing. We were invited to present our work at a special
session on Radar and Sensor Signal Processing at the 2007 IEEE Conference on Signal Processing
and Communications Applications [7]. We have submitted a journal paper based on this work
to IEEE Transactions on Signal Processing [8], which was accepted. We expect this paper to
appear some time in 2008.

During Müjdat Çetin’s stay at MIT during the summers, we got involved in one other piece of
work on anisotropy characterization in collaboration with Prof. Clem Karl and his student Ivana
Stojanovic. This work was motivated in part by the following observation. Let us consider the
other two major pieces of work we have discussed so far, in particular the subaperture-based wide-
angle imaging work of Section 2.1, and the joint imaging and anisotropy characterization work
described above. Let us evaluate how these two approaches constrain the anisotropy structure
across angle. The subaperture-based approach puts no constraints on that. Each subaperture
is processed independently, and then, for each scatterer, we stick together reflectivity estimates
across angle to get a rough estimate of the angular scattering function. On the other hand the
work described above in this section puts a very strong structural constraint on the angular
anisotropy. In particular, it only allows angular responses that can be expressed in terms of a
pre-selected dictionary for basic scattering mechanisms. The question then was whether we could
do something in between, that is, we would like to put a constraint an angular scattering but do
not want that to be too strong. We came up with a formulation in which one can perform joint
imaging and anisotropy characterization, where angular scattering functions are constrained to
be piecewise smooth. This appears to be a reasonable constraint. We have developed algorithms
for implementing this idea, and have obtained interesting results on the backhoe data set. We
presented this work at the Algorithms for SAR Imagery Conference in 2008 [18].

2.3 Methods for Hyperparameter Choice in Regularization-based Imag-
ing

Dr. Çetin has started to supervise a graduate student, Özge Batu, at Sabancı University, whose
Master’s thesis topic involves the problem of automatic hyper-parameter choice for regularization-
based sparse aperture imaging problems. This work provides contributions to Task 2. Regularization-
based sparse aperture imaging techniques combine mathematical models of the data collection
process with contextual information about the scene to be imaged. When such pieces of infor-
mation are combined in the right manner, these techniques provide robust and feature-enhanced
reconstructions, providing significant improvements over conventional imaging approaches. Yet,
this requires manually selecting some hyper-parameters that establish the balance between dif-
ferent pieces of information. For widespread and seamless use of such imaging algorithms in
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practice, techniques for automatic hyper-parameter choice are needed. This research is aimed at
developing such techniques. We have looked into existing automatic parameter choice techniques
applied in different fields, with a particular focus on non-quadratic problems. Two particular
techniques, Stein’s unbiased risk estimator (SURE), and generalized cross validation (GCV),
appear to be promising in terms of their potential performance for sparse aperture imaging
applications. We have adapted these technique to sparse aperture radar imaging problems.

Both SURE and GCV involve computational difficulties when considered in the framework of
non-quadratic regularization-based imaging. First of all, they require the computations involving
large scale matrix multiplications and inversions which are not practical at all. In addition,
both methods require the solution of an optimization problem over the hyperparameter. We
have developed a number of numerical techniques to address these issues. We have applied our
parameter choice techniques on the backhoe data, as well as on various synthetic data collection
scenarios. We observe that these techniques can provide reasonable, but slightly underregularized
solutions. This has been a very important first step towards fully automatic processing in feature-
enhanced sparse aperture SAR imaging. We presented this work at the Algorithms for SAR
Imagery Conference in 2008 [9]. A preliminary version of this work has also been presented at a
conference in 2007 [10].

We have also developed a new algorithm for solving sparse signal representation problems [11].
This algorithm might be extended to address certain aspects of the problem of automatic selection
of parameters involved in feature-enhanced sparse aperture imaging (Task 2) as well. A paper
that describes our work is [11].

2.4 Methods for Joint Imaging and Model Error Correction

Dr. Çetin has started to supervise another graduate student, Özben Önhon, at Sabancı Uni-
versity, whose Ph.D. thesis topic is focused on the problem of sensing model errors in sparse
aperture imaging scenarios. This work mainly provides contributions to Task 4. Model-based
sparse aperture imaging requires the use of a mathematical model of the data collection process
for effective scene reconstruction. Yet, in many scenarios, there are uncertainties in the observa-
tion model, e.g., due to imperfect knowledge of the position of the sensing platform. Such model
errors lead to various artifacts in the reconstructed images, which could have adverse effects,
e.g. on the performance of the ATR system that utilizes these images. This research aims to
develop imaging algorithms that exhibit robustness to such errors. The modality of particular
interest is SAR. For SAR, existing autofocus-based techniques for dealing with model errors are
not satisfactory in a sparse aperture imaging context. These techniques rely heavily on conven-
tional image formation, and view the best model parameter estimate as the one that improves
the conventional image in a particular fashion. Yet, in sparse aperture imaging contexts, conven-
tional images are often not of acceptable quality, even if there are no model errors. Consequently,
there is a need to consider the imaging and model correction problems jointly, rather than as
consecutive steps. We have formulated the problem of joint sparse aperture imaging and model
error correction as a joint optimization problem. We have obtained some preliminary results on
synthetic data, which demonstrate the potential of this approach in correcting model errors. We
are in the process of writing a paper describing this work [12].
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2.5 Connections to Follow-up Work on ATR

We got involved in an AFOSR MURI titled “Integrated Fusion, Performance Prediction, and
Sensor Management for Automatic Target Exploitation (ATE).” That effort has clear ties to the
work supported by this grant. In particular, innovative front-end processing involving advanced
imaging techniques, forms an important component of that project. As a result, we believe that
the MURI effort will constitute an important follow-up activity after this particular research
effort, and will utilize the progress we have made. We are in the process of formulating some
research problems involving the interaction of various components of an ATE system. This
includes, for example, the concept of “decision-directed imaging” which is the topic of Task 9.

2.6 Other Parts of our Sparse-Aperture Imaging Work, including
Application to Sensing Modalities other than SAR

While our primary focus in developing sparse-aperture imaging and signal processing techniques
in this project has been SAR, our mathematical framework and algorithms have the potential to
be useful in other scenrarios and application domains as well. We were involved in a number of
such activities ourselves, and we provide very brief information on some of them here.

We have developed a superresolution technique for source and target localization with acoustic
(possibly sparse) sensor arrays. This work has been published in IEEE Transactions on Signal
Processing [13].

We have extended our work on SAR to other coherent imaging modalities. This work has
been published in Optical Engineering [14].

We have applied the techniques we have developed to sparse aperture ultrasound imaging
for non-destructive evaluation. A paper describing our results has been published at the IEEE
International Conference on Acoustics, Speech, and Signal Processing [15].

3 INTERACTIONS WITH OTHER RESEARCHERS

A number of our collaborators have contributes to this project without receiving direct support.
These include Prof. Randy Moses (The Ohio State University), Prof. W. Clem Karl (Boston
University), Dr. Rajan Bhalla (SAIC), Dr. Thomas Kragh (Lincoln Laboratory), Dr. Eugene
Lavely (BAE Systems Advanced Information Technologies), and Prof. Aaron Lanterman (Geor-
gia Tech). We have already described our collaborative work with Prof. Moses, Prof. Karl, and
Prof. Lanterman, which has involved numerous visits and meetings. Here we briefly mention the
remaining interactions.

We have had a beneficial interaction with Dr. Rajan Bhalla from SAIC. Dr. Bhalla’s past
work on electromagnetic scattering and anisotropy characterization has both commonalities and
complementary aspects with our perspective. So his perspective on our work has been very
valuable for us. Dr. Bhalla provided us some XPATCH data, which we used effectively in our
work on joint imaging and anisotropy characterization discussed in Section 2.2. In addition,
our discussions with Dr. Bhalla have motivated our work on migratory scattering centers [6].
Overall, this interaction has provided benefits for Task 1, Task 3 and Task 5.

We have interacted with Dr. Thomas Kragh from MIT’s Lincoln Laboratory. Dr. Kragh has
previously used some of our algorithms on a number of radar imaging problems, and has been
interested in our work supported by this grant. He has performed some analysis of one of our
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imaging algorithms, and published that work at the IEEE International Conference in Image
Processing in 2006.

We have been involved in a synergistic activity with Dr. Eugene Lavely from BAE Systems
Advanced Information Technologies (formerly Alphatech, Inc.), through a subcontract from an
AFRL SBIR grant, where the goal is to use the feature-enhanced imaging ideas developed in this
project, as a foundation for feature-based tracking and ATR based on multi-sensor data.

4 PROFESSIONAL ACTIVITIES AND IMPACT

Dr. Çetin has organized a special session at the 2005 IEEE International Conference on Acoustics,
Speech, and Signal Processing, on the topic of “Advances in Sparse Signal Representation,” which
is a topic that forms the basis of the sparse-aperture imaging algorithms we have developed
under this grant. This conference was held on March 19-23, 2005, in Philadelphia. This session
brought together prominent experts working on the theory and applications of this topic, and
was attended by around 150 people.

Dr. Çetin has delivered a one-hour talk at the Workshop on Imaging from Wave Propagation
at the Institute for Mathematics and its Applications (IMA) of the University of Minnesota. Dr.
Çetin’s talk included some of the work supported by this grant. This workshop was part of the
IMA Thematic Year on Imaging, and was held on October 17-21, 2005. Many colleagues from
AFRL were also attendees at this workshop, with whom we had fruitful discussions about our
work and AFRL’s interests.

Dr. Çetin has served as a panelist at the Algorithms for SAR Imagery Conference in April
2007. The panel topic was the GOTCHA Challenge Problem of imaging in an urban sensing
environment, in which the sensor collects data about the scene over extended periods of time.

Dr. Çetin was an invited speaker to present the work on joint image formation and anisotropy
characterization at a special session on Radar and Sensor Signal Processing at the IEEE Con-
ference on Signal Processing and Communications Applications in June 2007 [7].

The 2008 Algorithms for SAR Imagery Conference, which is part of the SPIE Defense and
Security Symposium, contained a special session titled ”Sparse Recognition for Imaging.” We are
happy to observe that our work performed under this project has provided inspiration for the
topic of this special session. Furthermore, most of the papers presented in this session contained
direct references to our work. Finally, there was a panel discussion on using sparsity for radar,
which we feel has been inspired in part by various pieces of our sparsity-driven imaging work for
SAR. Overall, we are happy to see that our work has had some impact and our colleagues are
using various parts of our ideas and algorithms for making further progress on radar imaging in
general, and sparse-aperture imaging in particular.

5 PUBLICATIONS

The following is a list of recent papers, theses, and other publications connected with the research
conducted under this grant.
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[1] M. Çetin and R. L. Moses, “SAR imaging from partial-aperture data with frequency-band
omissions,” in Algorithms for Synthetic Aperture Radar Imagery XII, E. G. Zelnio and F. D.
Garber, Eds., Orlando, FL, USA, Mar.-Apr. 2005, Proc. SPIE.
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ABSTRACT

We consider the problem of wide-angle SAR imaging from data with arbitrary frequency-band omissions. We
propose an approach that involves composite image formation through combination of subaperture images, as
well as point-enhanced, superresolution image reconstruction. This framework provides a number of desirable
features including preservation of anisotropic scatterers that do not persist over the full wide-angle aperture;
robustness to bandwidth limitations and frequency-band omissions; as well as a characterization of the aspect
dependence of scatterers. We present experimental results based on the Air Force Research Laboratory (AFRL)
“Backhoe Data Dome,” demonstrating the effectiveness of the proposed approach.

Keywords: synthetic aperture radar, wide-angle imaging, sparse-aperture imaging, feature-enhanced imaging,
inverse problems, superresolution

1. INTRODUCTION

Traditional image formation techniques for synthetic aperture radar (SAR) rely on data on a narrow-angle, filled
aperture. In particular, it is customary to assume that the phase history data lie in an (almost rectangular)
annular region in the 2-D spatial frequency domain, establishing a filled synthetic aperture in both the angle
(azimuth) and the frequency (range) direction. This is based on the fact that many traditional systems integrate
over relatively small angles (typically on the order of a few degrees) and transmit over an uninterrupted portion of
the frequency spectrum. However, there are a number of emerging applications where neither of these assumptions
holds. One such application is monostatic wide-angle imaging, which may be used to obtain ultra-high resolution
at relatively high operating frequencies, or to compensate for the reduced resolution in relatively low frequencies.
The data in wide-angle sensing usually lie in a narrow arc in the spatial frequency domain, which constitutes
a sparse aperture since the data support fills only a small portion of the circumscribing rectangle. A number
of recent technology advancements enable consideration of wide-angle imaging. First, advancements in GPS
and INS systems permit collection of coherent data across longer times and flight paths. Second, unmanned air
vehicle (UAV) technology and collaboration among UAVs provide a number of wide-angle imaging possibilities.
UAVs can, in many applications, fly closer to the scene of interest, and thus can traverse a wider-angle aperture
in a given amount of time compared to a platform with a greater standoff distance. A second application of
interest is foliage penetration (FOPEN) radar, which operates at the VHF/UHF bands. At these relatively low
frequencies, it is likely that we will not be able to use an uninterrupted frequency band, due to the existence of
other in-band radiators and FCC licenses. As a result, the data will contain frequency-band omissions resulting in
a non-traditional, sparse (or at least not filled) aperture. More broadly, partial aperture data involving omissions
in the frequency band may be encountered in higher frequencies as well, due to a number of reasons including
jamming and data dropouts. A third application involves bistatic and multistatic imaging. One scenario is a
bistatic/multistatic radar operation, in which a distant standoff platform acts as the transmitter and one or more
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UAVs act as (closer-in) receivers. UAVs working in tandem can collect angular subapertures which can then be
combined into a wider aperture which potentially involves omissions in the frequency and/or angle bands.

When traditional image formation techniques are applied to wide-angle data with frequency-band omissions,
they often yield unsatisfactory results, making the resulting images difficult to interpret and of limited value for
further processing. This is due to a number of reasons. First, the point spread function (PSF) of an isotropic
point scatterer coherently imaged over a wide-angle aperture is more irregular than the more customary sinc-like
PSFs encountered in traditional SAR imaging, leading to sidelobes that might interfere with other scatterers
in the scene. Second, when there are frequency-band omissions, the PSFs resulting from conventional imaging
become even more irregular, causing yet more pronounced artifacts in the reconstructed images. Furthermore,
different types of band omissions lead to different kinds of artifacts, making it a very challenging task to adapt
to and interpret the formed imagery. Third, in a wide-angle imaging scenario, the isotropic point scattering
assumption employed by conventional imaging does not usually hold, as many scatterers do not persist over
such wide apertures and exhibit some aspect dependence. In such a scenario, conventional imaging can lead to
inaccuracies in relative reflectivities of scatterers with different levels of anisotropy. Furthermore, such processing
only produces a reflectivity estimate of each scatterer but does not characterize its aspect dependence. Yet, such
aspect dependence (if accurately extracted) can itself be an important feature for scene interpretation, e.g. for
target recognition.

Motivated by these observations, we explore new image formation strategies for wide-angle data with frequency-
band omissions. In particular, we consider the combination of two ideas based on our previous work: composite
wide-angle image formation based on subaperture images,1 and model-based, point-enhanced superresolution
imaging.2 Composite image formation aims to address the issue of limited scattering persistence in wide-angle
imaging. The idea is to form subaperture images from narrower-angle subsets of the data, and then form a
composite image through a nonlinear combination of these subaperture images. When conventional Fourier
transform-based imaging is used to form the subaperture images, composite imaging still suffers from artifacts
due to the irregular PSFs, especially in cases involving low-bandwidth data or frequency-band omissions. To
address these issues, we propose using point-enhanced imaging2 to form the subaperture images. This technique
uses an explicit model of the observation process (hence incorporates information about the structure of the
partial aperture), and as a result, is more robust to data limitations. Furthermore this framework also allows the
incorporation of prior information about the underlying scene, which can lead to superresolution. Given such
point-enhanced subaperture images, we again form a composite image. This imaging strategy produces not only
a reflectivity estimate for each spatial location, but also some information on aspect dependence. We present ex-
perimental results based on the Air Force Research Laboratory (AFRL) “Backhoe Data Dome,”3 demonstrating
the effectiveness of the proposed approach.

2. WIDE-ANGLE IMAGING WITH FREQUENCY-BAND OMISSIONS

Let us consider a wide-angle imaging scenario with a center frequency of 10 GHz, an angular aperture of 110◦,
and a bandwidth of 500 MHz. Fig. 1 shows the magnitude image and the frequency support of the simulated
Hamming-windowed data from an isotropic point scatterer in such a scenario. We now use this example to discuss
image formation strategies from such data as well as partial aperture data with frequency-band omissions.

2.1. Coherent Integration with an Isotropic Scattering Assumption

The conventional processing we consider here interpolates the phase history data lying on a narrow arc to a
Cartesian grid, performs zero-padding to fill the circumscribing rectangle (see Fig. 1), and then takes an inverse
2-D Fourier transform to reconstruct the image. Such processing of the data shown in Fig. 1 leads to the PSF
in Fig. 2(a). The curved data support leads to this shape of the PSF which is quite different from the sinc-like
PSFs of traditional narrow-angle SAR. This PSF is indicative of the types of artifacts that are likely to appear
in conventional images of isotropic scatterers from wide-angle data. Here we have assumed that we have the
entire 500 MHz band of data. Now let us consider the case where we have omissions in the frequency band. In
particular, let us consider the two masks in Fig. 3, indicating two patterns of band omissions leading to 70%
and 30% of the data being available, respectively. In Fig. 2(b) and 2(c) we show the PSFs that result from
conventional imaging in the case of such partial aperture data with frequency-band omissions. These PSFs
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Figure 1. Magnitude image and frequency support of Hamming-windowed data from an isotropic point scatterer over a
110◦ aperture. Center frequency is 10 GHz and bandwidth is 500 MHz.

(a) (b) (c)

Figure 2. Conventional images of a point scatterer based on the data shown in Fig. 1. The images show a region of
10 × 10 meters. Vertical and horizontal directions in the images correspond to range and cross-range respectively. The
images are in logarithmic scale and show the top 40dB of the responses. (a) Full frequency band available. (b) 70% of
the frequency band available (based on the mask in Fig. 3(a)). (c) 30% of the frequency band available (based on the
mask in Fig. 3(b)).

exhibit significant, wide lobes, suggesting that conventional imaging will cause severe artifacts in these scenarios.
In these illustrative examples, we have considered an isotropic point scatterer. Of course, another problem with
conventional imaging is that most scatterers will not persist over such wide-angle apertures, and the isotropic
scattering assumption will fail. This is an issue we address in the next section.

2.2. Composite Image Formation

In order to accommodate the aspect dependence of the scatterers, we have considered a composite image for-
mation strategy in Ref. 1, which we summarize next. The idea is to use a bank of K matched filters, each
characterized by a center response azimuth and a response width and shape.4, 5 Each of these matched filter
outputs is an image conventionally reconstructed from a subaperture of the full azimuth aperture. The un-
derlying assumption is that it is reasonable to assume isotropic scattering within the angular extent of these
subapertures. Given the subaperture images f̂

k
for all subapertures k ∈ {1, ...,K}, the composite image f̂ is

formed as follows:

f̂ij = arg max
k

f̂k
ij (1)

where f̂k
ij and f̂ij denote the (i, j)-th pixel of the k-th subaperture image and of the composite image, respectively.

Thus, the composite image has the interpretation of a Generalized Likelihood Ratio Test (GLRT) statistic for
scattering responses with known response shape4, 5 but with unknown peak response angle. We note that in
addition to the reflectivity estimates, there is more information available at the output of this process, namely
for each pixel we know the index k of the corresponding subaperture image at which the maximum occurs. This
provides some characterization of the aspect dependence of the scatterers, which may be useful for aiding object
visualization or for use in an automatic target recognition algorithm.
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Figure 3. Two patterns of frequency-band omissions, dark regions indicating bands where data are available and light
regions indicating missing bands. The masks in (a) and (b) lead to 70% and 30% of the data from the full band being
available, respectively.

(a) (b) (c)

Figure 4. Conventionally reconstructed images of a point scatterer based on data from a 20◦ subaperture centered at
45◦. The images show a region of 10 × 10 meters. (a) Full frequency band available. (b) 70% of the frequency band
available. (c) 30% of the frequency band available.

For illustration, let us view the PSFs corresponding to a single subaperture image that would then be used
in composite image formation. In particular, let us consider a subaperture of the data shown in Fig. 1, which
is centered at 45◦ and which has a width of 20◦. The PSF for the case of no frequency-band omissions is
shown in Fig. 4(a), which is essentially a sinc-like response wider in the range direction than in the cross-range
direction. The PSFs for the frequency-band omissions corresponding to the two patterns in Fig. 3 are shown in
Fig. 4(b) and 4(c). We note that frequency-band omissions cause significant widening of the PSFs, implying that
if conventionally formed subaperture images are used in composite image formation, the final image will suffer
from significant artifacts. In the next section, we consider an alternative strategy to address this issue.

2.3. Model-based, Point-enhanced Composite Image Formation

For subaperture image formation, we consider an approach based on the feature-enhanced image formation
framework of Ref. 2. In particular, in this paper we focus on resolving and enhancing spatially-localized features,
and consider the point-enhanced imaging idea of Ref. 2. This imaging technique can use data in the phase
history, the range profile, or the spatial domain. Here we consider the version where we use the conventional
image as the input data, hence the technique works as a deconvolution method. In particular, let yk be the
conventionally reconstructed k-th subaperture image, and let Hk be a matrix each row of which contains a
spatially shifted version of the corresponding PSF (stacked as a row vector). Then point-enhanced subaperture
imaging is achieved by solving the following optimization problem:

f̂k = arg min
f

{‖yk − Hkf‖2
2 + λ‖f‖1

}
(2)
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where λ is a scalar parameter. The first term in the objective function of Eqn. (2) is a data fidelity term,
incorporating the mathematical model of the observation process Hk into imaging. The second term enforces
sparsity of the reconstructed image, which can lead to superresolution in the case of scenes containing a relatively
small number of spatially-localized scatterers. The optimization problem in Eqn. (2) can be solved by using
efficient iterative algorithms. We note that this expression is written in matrix-vector form for convenience,
however in practice we avoid explicitly forming the large matrices Hk (hence we reduce the memory requirements),
by noting that the matrix vector products can be carried out by convolutional operations. Given such point-
enhanced subaperture images, we again form composite images as described in Section 2.2, with the only change
of replacing the conventional subaperture images with the point-enhanced ones. Note that this procedure again
produces more than just an image of reflectivities, since we also obtain a characterization of the aspect dependence
of each scatterer.

3. EXPERIMENTAL RESULTS

We present 2D image reconstruction experiments based on the AFRL “Backhoe Data Dome, Version 1.0,” which
consists of simulated wideband (7-13 GHz), full polarization, complex backscatter data from a backhoe vehicle
in free space.3 The backscatter data are available over a full upper 2π steradian viewing hemisphere. In our
experiments, we use VV polarization data, centered at 10 GHz, and with an azimuthal span of 110◦ (centered
at 45◦). We consider four different bandwidths: 500 MHz, 1 GHz, 2 GHz, and 4 GHz. For each of these four
bandwidths, we consider both the case of full-bandwidth data, and the case of frequency-band omissions where
70% or 30% of the spectral data within that bandwidth are available. For frequency-band omissions, we use the
two masks in Fig. 3 with appropriate scaling to the corresponding bandwidth. For composite imaging, we use
19 subapertures, with azimuth centers at 0◦, 5◦, . . ., 90◦, each with an azimuthal width of 20◦. The response
shape for each subaperture is chosen to be a Hamming window.

3.1. Linear Aperture

First we consider data that would correspond to a linear flight path of the radar platform. In particular, we use
azimuth and elevation pairs that simulate such a linear aperture, with a peak elevation angle (at azimuth center)
of 30◦. In Fig. 5 we show images of the backhoe reconstructed from such data with various bandwidths. The
composite images in Fig. 5(b) appear to provide larger response amplitudes for narrow-aperture scattering centers
as compared to the conventional images in Fig. 5(a). This is because the conventional coherent integration process
averages all scatterers (including those with a narrow-angle persistence) over the entire wide-angle azimuthal
aperture. We note that these two types of images exhibit similar resolution properties and mainlobe structure
for the scatterers. As bandwidth is reduced, some features of the backhoe appear to be lost in the images in
Fig. 5(a) and 5(b). In contrast, the corresponding composite, point-enhanced images in Fig. 5(c) appear to
preserve and exhibit some of the features present in higher-bandwidth images. We choose the hyperparameter
λ in Eqn. (2) by visual assessment of the formed imagery. Automatic hyperparameter choice is a topic of our
current research. Next we consider frequency-band omissions. Fig. 6 contains results for the case where 70%
of the band is available. We observe that conventional and composite images suffer from sidelobe artifacts,
especially in the low-bandwidth cases. On the other hand, composite, point-enhanced images in Fig. 6(c) do
not suffer from significant degradations as compared to the full-band versions in Fig. 5(c), exhibiting robustness
to frequency-band omissions. Finally, in Fig. 7 we present results for the case where we have only 30% of the
frequency band available. All imaging methods exhibit noticeable artifacts in this case, although composite,
point-enhanced imaging is still able to localize significant scatterers and features of the backhoe.

3.2. Fixed Elevation

We now consider a different aperture, involving a fixed elevation of 0◦, and present the results of an experimental
analysis analogous to the one in the previous section. The results shown in Figs. 8-10 lead to similar observations.
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Figure 5. SAR images of the backhoe using a linear aperture and bandwidths of 4 GHz, 2 GHz, 1 GHz, and 500 MHz.
(a) Conventional imaging. (b) Composite imaging. (c) Composite, point-enhanced imaging.

3.3. Visualization of Aspect Dependent Scattering

In the composite and composite, point-enhanced reconstruction results in the previous sections, we have only
shown the reflectivities at each spatial location. However, as we pointed out in Section 2, we also have the
knowledge of which subaperture has led to the maximum reflectivity for each spatial location. This in turn
provides some information on the aspect dependence of each scatterer, namely the aspect providing the strongest
return from that scatterer. Here we present one way of visualizing that information by encoding the maximum-
response aspect through color. In particular, we color-code each pixel by one of 19 colors, corresponding to which
of the 19 subapertures identified a maximum. We encode the peak amplitude in the brightness of the pixel. The
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Figure 6. SAR images of the backhoe with frequency-band omissions (70% of the full-band data available) using a linear
aperture and bandwidths of 4 GHz, 2 GHz, 1 GHz, and 500 MHz. (a) Conventional imaging. (b) Composite imaging. (c)
Composite, point-enhanced imaging.

result is a color image, where red pixels denote maximum response at 0 degrees, green pixels at 45 degrees,
and blue pixels at 90 degrees, with colors of intermediate hues representing the aspects in between, resulting
in 19 colors each corresponding to a particular aspect. In Fig. 11, we show such color-coded versions of the
composite and composite, point-enhanced reconstructions of Fig. 6. These images, especially the point-enhanced
ones, suggest that the aspect dependence information extracted in this manner can be informative, and may
potentially be useful for scene interpretation, e.g. for target classification.
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Figure 7. SAR images of the backhoe with frequency-band omissions (30% of the full-band data available) using a linear
aperture and bandwidths of 4 GHz, 2 GHz, 1 GHz, and 500 MHz. (a) Conventional imaging. (b) Composite imaging. (c)
Composite, point-enhanced imaging.

4. CONCLUSION

We have considered the problem of wide-angle SAR imaging from partial-aperture data with frequency-band
omissions. We have proposed an approach that uses model-based, point-enhanced image reconstruction for
narrow-angle subapertures, and then performs a nonlinear combination of the subaperture images to form a
final wide-angle composite image. We have demonstrated that images formed in this manner exhibit robustness
to bandwidth limitations as well as to frequency-band omissions. In addition, this approach yields a partial
characterization of aspect dependence, which we have considered visualizing through a color-coding scheme.
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Figure 8. SAR images of the backhoe using a 0◦-elevation aperture and bandwidths of 4 GHz, 2 GHz, 1 GHz, and 500
MHz. (a) Conventional imaging. (b) Composite imaging. (c) Composite, point-enhanced imaging.

Although we have considered only structured frequency-band omissions in this paper, the approach can also
be applied to the case of unstructured omissions, as in random data dropouts. Similarly, these ideas can also be
useful for the case of angle-band omissions. One important extension of this work could consider more precise
characterization of angular anisotropy, by estimating the persistence level of each scatterer (which was assumed
to be equal to the subaperture extent in this paper).
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Figure 9. SAR images of the backhoe with frequency-band omissions (70% of the full-band data available) using a
0◦-elevation aperture and bandwidths of 4 GHz, 2 GHz, 1 GHz, and 500 MHz. (a) Conventional imaging. (b) Composite
imaging. (c) Composite, point-enhanced imaging.
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Figure 10. SAR images of the backhoe with frequency-band omissions (30% of the full-band data available) using a
0◦-elevation aperture and bandwidths of 4 GHz, 2 GHz, 1 GHz, and 500 MHz. (a) Conventional imaging. (b) Composite
imaging. (c) Composite, point-enhanced imaging.

REFERENCES
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Figure 11. Visualization of aspect dependence. Angle-encoded SAR images of the backhoe with frequency-band omissions
(70% of the full-band data available) using a linear aperture and bandwidths of 4 GHz, 2 GHz, 1 GHz, and 500 MHz. (a)
Composite imaging. (b) Composite, point-enhanced imaging.

4. M. R. Allen and L. E. Hoff, “Wide-angle wideband SAR matched filter image formation for enhanced detection
performance,” in Algorithms for Synthetic Aperture Radar Imagery, 2230, pp. 302–314, SPIE, (Orlando,
FL, USA), Apr. 1994.

5. R. D. Chaney, A. S. Willsky, and L. M. Novak, “Coherent aspect-dependent SAR image formation,” in
Algorithms for Synthetic Aperture Radar Imagery, 2230, pp. 256–274, SPIE, (Orlando, FL, USA), Apr. 1994.

22



Region-enhanced passive radar imaging

M. Çetin and A.D. Lanterman

Abstract: The authors adapt and apply a recently-developed region-enhanced synthetic aperture
radar (SAR) image reconstruction technique to the problem of passive radar imaging. One goal in
passive radar imaging is to form images of aircraft using signals transmitted by commercial radio
and television stations that are reflected from the objects of interest. This involves reconstructing an
image from sparse samples of its Fourier transform. Owing to the sparse nature of the aperture, a
conventional image formation approach based on direct Fourier transformation results in quite
dramatic artefacts in the image, as compared with the case of active SAR imaging. The region-
enhanced image formation method considered is based on an explicit mathematical model of the
observation process; hence, information about the nature of the aperture is explicitly taken into
account in image formation. Furthermore, this framework allows the incorporation of prior
information or constraints about the scene being imaged, which makes it possible to compensate for
the limitations of the sparse apertures involved in passive radar imaging. As a result, conventional
imaging artefacts, such as sidelobes, can be alleviated. Experimental results using data based on
electromagnetic simulations demonstrate that this is a promising strategy for passive radar imaging,
exhibiting significant suppression of artefacts, preservation of imaged object features, and
robustness to measurement noise.

1 Introduction

Traditional synthetic aperture radar (SAR) systems transmit
waveforms and deduce information about targets by
measuring and analysing the reflected signals. (Ground-
based systems looking at airborne targets are generally
referred to as inverse SAR (ISAR); for brevity we just use
the term SAR.) The active nature of such radars can be
problematic in military scenarios since the transmission
reveals both the existence and the location of the
transmitter. An alternative approach is to exploit ‘illumina-
tors of opportunity’ such as commercial television and FM
radio broadcasts. Such passive approaches offer numerous
advantages. The overall system cost may be cheaper, since a
transmitter is no longer needed. Commercial transmitters
are typically much higher in elevation than the prevailing
terrain, yielding coverage of low altitude targets. Most
importantly, such a system may remain covert, yielding
increased survivability and robustness against deliberate
directional interference. Such passive multistatic radar
systems, such as Lockheed Martin’s Silent Sentry, have
been developed to detect and track aircraft. If one could
additionally form images from such data, that would be
useful in identifying the observed aircraft through image-
based target recognition. This provides an alternative to the
radar cross-section signature-based automatic target recog-
nition (ATR) method proposed in [1]. Imaging methods are

of interest in their own right beyond the ATR application,
since a system may encounter targets that are not present in
the ATR system’s library; in such cases, it would be good to
have an image to present to a human analyst. Recently there
has been some interest in image reconstruction from passive
radar data. In particular, [2] contains a study of the
application of well-known deconvolution techniques to
passive radar data. The work in [3, 4] proposes the use of
time–frequency distributions for passive radar imaging.
Finally, [5] contains a derivation of Cramér–Rao bounds for
target-shape estimation in passive radar.

Television and FM radio broadcasts operate at wave-
lengths that are much larger than those typically employed in
active radar imaging systems. For instance, an X-band radar
might operate at 10GHz, whereas a passive radar system
operates in theVHF andUHFbands (55–885MHz). From an
imaging viewpoint, lower frequencies result in reduced
crossrange resolution; hence, to achieve high-resolution
images, the target needs to be tracked for some length of time
to obtain data over a wide range of angles. Another
consequence is that low-frequency images contain extended
features, and are not well-modelled by a small number of
scattering centres. Furthermore, the signals involved in such
broadcasts have much lower bandwidth than the signals used
in active radar systems. As a result, given one transmitter–
receiver pair, the achievable range resolution is very poor.
Hence one needs to make use of multiple transmitters for
reasonable coverage in the spatial spectrum.

As a result of these constraints and requirements, forming
images of aircraft using passive radar systems involves
reconstructing an image from sparse and irregular samples
of its Fourier transform [2, 6]. The sampling pattern in a
particular data collection scenario depends on the locations
of the transmitters and the receiver, as well as the flight path
of the object to be imaged; hence it is highly variable.
Conventional Fourier transform-based imaging essentially
sets the unavailable (due to the sparse aperture) data
samples to zeros. This results in various artefacts in

q IEE, 2005

IEE Proceedings online no. 20045019

doi: 10.1049/ip-rsn:20045019
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the formed image, the severity of which depends on the
specifics of the data collection scenario.

Motivated by the limitations of direct Fourier transform-
based imaging in the context of passive radar, an alternative
idea of using a deconvolution technique borrowed from radio
astronomy (namely the CLEAN algorithm [7, 8]) has been
explored in [2]. However, the results of the study in [2],
summarised in Section 4.4, suggest that the CLEAN
algorithm does not outperform direct Fourier reconstruction
for passive radar imaging for the following reasons.
The CLEAN algorithm, as well as other deconvolution
algorithms based on similar sparse image assumptions, work
best on images that arewell-modelled as a set of distinct point
scatterers. Hence, such algorithms are well-suited to high-
frequency imaging ofman-made targets, as the current on the
scatterer surface tends to collect at particular points. When
using low frequencies of interest in passive radar, the images
are more spatially distributed. In addition, the complex-
valued, and potentially random-phase [9] nature of radar
imaging also presents a complication for CLEAN.
The complex-valued characteristics of both the underlying
image and the observation model produce constructive and
destructive interference effects that conspire to obscure true
peaks in the underlying reflectance, causing them to be
missed by the CLEAN algorithm, and more damagingly
create spurious apparent peaks which mislead the algorithm.

To address these challenges we adapt and use a recently-
developed, optimisation-based SAR imaging method [10].
This approach uses an explicit model of the particular data
collection scenario. This model-based aspect provides
significant reduction in the types of artefacts observed in
conventional imaging. More importantly, the optimisation
framework contains nonquadratic constraints for region-
based feature enhancement, which in turn results in accurate
reconstruction of spatially extended features. Finally, this
approach explicitly deals with the complex-valued and
potentially random-phase nature of radar signals.We present
experimental results on data obtained through electromag-
netic simulations via the Fast Illinois Solver Code (FISC),
demonstrating the effectiveness of the proposed approach
for passive radar imaging.

2 Data collection in passive radar

In a bistatic radar the transmitter and receiver are at different
locations. The angle between the vector from the target to the
transmitter and the vector from the target to the receiver,
corresponding to the incident and observed directions of the
signal, is called the bistatic angle b: Formonostatic radar, the
bistatic angle is 0�: Figure 1a illustrates the bistatic radar
configuration. The complex-valued data collected at trans-
mitting frequency f is a sample of the Fourier transform of the
target reflectivity, and is equivalent to a monostatic
measurement taken at the bisecting direction and at a
frequency of f cosðb=2Þ [11, 12]. In a polar co-ordinate
system, the bisecting direction gives the azimuthal
co-ordinate in Fourier space, and ð4pf=cÞ cosðb=2Þ gives
the radial co-ordinate, where c is the speed of light. As the
receiver rotates away from the transmitter the bistatic angle b
increases and the equivalent frequency f cosðb=2Þ decreases.
When b is 180�; the measurement is a sample located at the
origin in Fourier space. Measurements collected from a
receiver that rotates 360� around the target lie on a circle in
Fourier space, passing through the origin. The diameter of
the circle is 4pf=c: Different incident frequencies give data
on circles in Fourier space with different diameters, as shown
in Fig. 1b. If the transmitter rotates around the target,
the circle in Fourier space also rotates by the same amount

and we get more circles of data in Fourier space. Figure 1b
illustrates the type of Fourier space coverage obtained
through angular and frequency diversity in a bistatic radar.

Unlike the case in active radar systems where one uses
high-bandwidth signals, in passive radar based on radio and
television signals, one is limited to much lower bandwidths.
FM radio has a usable bandwidth of around 45 kHz, and
although analogue TV technically has a bandwidth of
6MHz, little of that is usable for radar purposes.
The synchronisation (sync) pulses inherent in the analogue
TV signal result in extreme range ambiguities if one
attempts traditional matched filtering range compression, as
first discovered by Griffiths and Long in the mid-1980s [13].
By the time the signal reaches the receiver, the only
significant usable signal is the TV carrier itself, which
contains around 50% of the total power in the analogue
TV signal (see pp. 20, 21 of [14]). (Having so much power
in the carrier may seem wasteful from the standpoint of
modern communications, but remember that at the time
analogue TV standards were developed the receiver
hardware had to be exceedingly simple. Essentially, the
transmitter needs to provide its own ‘local oscillator’ to the
receiver.) We can essentially model the usable TV signal as
a simple sinusoid. Consequently, at each observation
instant, we might think of each transmitter–receiver pair
providing essentially ‘one point’ in the 2-D frequency
spectrum. A multistatic system exploiting multiple televi-
sion and radio stations should be used for obtaining the
frequency diversity needed for reasonable quality imaging.
The bistatic imaging principle illustrated in Fig. 1 applies to
each transmitter=receiver pair in a multistatic system.
The aircraft must be tracked and data collected over time
to obtain angular diversity, with each transmitter–receiver
pair providing data on an arc in 2-D Fourier space. Different
transmitters use different frequencies and are at different
locations, which leads to multiple arcs of Fourier data,
providing further data diversity. In the passive radar
scenario explored in this paper, there are multiple
transmitters but just one receiver, although the basic idea
could easily be expanded to include multiple receivers if
appropriate data links are available.

In active synthetic aperture radar, either monostatic or
bistatic, one conventional image formation technique is to
interpolate the data to a rectangular grid, followed by an
inverse Fourier transform. Fourier points outside of the
available data support are simply set to zero. In monostatic
SAR this is called the polar format algorithm [15–17].
The bistatic version is similar, except the data are placed on
the grid with the cosðb=2Þwarping described above [12, 17].
We can consider a similar approach as the ‘conventional’
method for imaging in passive radar. In active monostatic
radar imaging, the data in the spatial frequency domain
usually lie in a regular annular region. The regularity of this
region then leads to a sinc-like point spread function when
the image is formed using a Fourier transform. On the other
hand, in multistatic passive radar, the ‘sampling pattern’ in
the spatial frequency domain is much more irregular for a
number of reasons. First, since the transmitted signals are
narrowband, each transmitter–receiver pair provides a
‘point’ rather than a ‘slice’ of data. Secondly, to obtain
reasonable azimuth resolution, data are collected over a
wider range of observation angles. Thirdly, the look-angles
of different transmitter–receiver pairs lead to coverage in
different areas of the spectrum. In a related fashion,where the
data lie in the spectrum depends on the flight path of the
object being imaged. As a result, whenwe form images using
direct Fourier inversion the imaging artefacts that we
encounter are more severe than in the case of active radar

IEE Proc.-Radar Sonar Navig., Vol. 152, No. 3, June 2005186

24



systems. Furthermore, the nature of the artefacts cannot be
determined just based on the system design, since the flight
path of the aircraft has a role as well.

3 Region-enhanced passive radar imaging

Based on the issues outlined in the previous Section,
we propose a different approach for passive radar imaging.
Two main ingredients of this approach make it especially
suited for passive radar applications. First, it is model-
based, meaning that it explicitly uses a mathematical model
of the particular observation process. As a result, it has a
chance of preventing the types of artefacts that are caused
by direct Fourier inversion. Secondly, it facilitates the
incorporation of prior information or constraints about the
nature of the scenes being imaged. This is important, since
passive radar imaging is inherently an ill-posed problem.
In particular, we focus on the prior information that at the
low frequencies of interest in passive radar, the scenes
contain spatially extended structures, corresponding to the
actual contours of real aircraft. As a result, we incorporate
constraints for preserving and enhancing region-based
features, such as object contours.
The approach we use for passive radar imaging is based

on the feature-enhanced image formation framework of [10],
which is built on nonquadratic optimisation. This approach
has previously been used in active synthetic aperture

radar imaging. Let us provide a brief overview of
feature-enhanced imaging, starting from the following
assumed discrete model for the observation process:

g ¼ Tf þ w ð1Þ
where g denotes the observed passive radar data, f is
the unknown sampled reflectivity image, w is additive
measurement noise, all column-stacked as vectors, and T is a
complex-valued observation matrix. The data can be in the
spatial frequency domain, in which case T would be an
appropriate Fourier transform-type operator corresponding
to the particular sampling pattern determined by the flight
path of the target. Alternatively, through a Fourier transform,
one can bring the data into the spatial domain, and then use
the resulting transformed observations as the input to the
algorithm. In this case, T would be the point spread function
corresponding to the particular data collection scenario.
Our experiments are based on the last-mentioned setup.

The objective of image reconstruction is to obtain an
estimate of f based on the data g in (1). Feature-enhanced
image reconstruction is achieved by solving an optimisation
problem of the following form:

f̂f ¼ argmin
f

kg� Tfk22 þ l1k fkp
p þ l2kHj f jkp

p

� �
ð2Þ

where k � kp denotes the ‘p-norm ð p � 1Þ; H is a 2-D
derivative operator, j f j denotes the vector of magnitudes of
the complex-valued vector f, and l1; l2 are scalar
parameters. The first term in the objective function of (2)
is a data fidelity term. The second and third terms
incorporate prior information regarding both the behaviour
of the field f, and the nature of the features of interest in the
resulting reconstructions. The optimisation problem in (2)
can be solved by using an efficient iterative algorithm [10],
based on half-quadratic regularisation [18]. We describe a
basic version of this algorithm in the Appendix.

Each of the last two terms in (2) is aimed at enhancing a
particular type of feature that is of importance for radar
images. In particular, the term k fkp

p is an energy-type
constraint on the solution, and aims to suppress artefacts and
increase the resolvability of point scatterers. The kHj f jkp

p

term, on the other hand, aims to reduce variability in
homogeneous regions, while preserving and enhancing
region boundaries. The relative magnitudes of l1 and l2
determine the emphasis on such point-based against region-
based features. Therefore this framework lets us reconstruct
images with two different flavours: using a relatively large l1
yields point-enhanced imagery, and using a relatively large
l2 yields region-enhanced imagery. In the context of passive
radar imaging, our primary focus is to preserve and enhance
the shapes of spatially-distributed objects. Hence we
emphasise the use of the region-enhancement terms here.

4 Experiments

4.1 Electromagnetic simulation using FISC

Asymptotic codes such as XPATCH [19] do not work well
for aircraft-sized targets at the low frequencies of interest in
passive radar systems. Hence, the simulations in the
remaining sections invoke the Fast Illinois Solver Code
(FISC) [20, 21], which solves Maxwell’s equations with
the method of moments. FISC is extremely particular about
the quality of CAD models it needs. In particular, FISC
requires that each edge of each triangular facet exactly
match the edge of some other triangular facet. The model
must contain no internal or intersecting parts. Unfortunately
such models are rare; in particular, readily available models

Fig. 1 Bistatic radar

a Basic configuration
b Bistatic Fourier space coverage due to angular and frequency diversity
The authors would like to thank Yong Wu, who created these figures for a
DARPA annual report while a student at the University of Illinois
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which are perfectly adequate for XPATCH are often not
suitable for FISC.

Each experiment in this paper is conducted on two
different targets: a VFY-218, and a Dassault Falcon 20.
A FISC compatible model of the VFY-218 comes standard
as part of the SAIC Champaign XPATCH=FISC distri-
bution. For the Falcon 20, we started with a Falcon 100
model purchased from Viewpoint Datalabs (now called
Digimation), which happened to be FISC compatible.
The Falcon 20 is essentially a larger version of the Falcon
100, so we used an approximate Falcon 20 model (as done in
[2]) by scaling the Falcon 100 model.

Given such models we construct Fourier datasets through
FISC runs. In our experiments we use only the
HH-polarisation data. The support of the data in the spatial
frequency domain will in general be limited by the
observation geometry and system parameters. However, to
establish an ‘upper bound’ on the expected imaging
performance, let us first present the images we would
obtain if we had a ‘full’ dataset. To this end, let us use the
Fourier data corresponding to 211.25MHz (NTSC televi-
sion channel 13) and incident and observed angles over
the full 360� viewing circle. Such data would cover a disc in
the spatial frequency domain [2]. The magnitudes of the
radar images of the two targets, created by inverse Fourier
transforming such data, are shown in Fig. 2. Of course, such
rich data sets would be unavailable in practice. However,
these reconstructions can serve as ‘reference scenes’ with
which to compare the results of our experiments in the
following Sections, which are based on realistic data
collection scenarios.

4.2 Experimental setup

Figure 3 shows the locations of some high-power VHF
television and FM radio stations in the Washington, DC area
that are used in our simulations. The centre of the
co-ordinate system, where our hypothetical receiver is
located, is the Lockheed Martin Mission Systems facility in
Gaithersburg, Maryland. Five hypothetical flight paths are
shown. The left column of Fig. 4 shows the Fourier
‘sampling patterns’ resulting from this particular transmit-
ter=receiver geometry for each of the five flight paths.
The sampling pattern indicates the support of the observed
data in the spatial frequency domain for a particular flight
path. Hence, the observed data for each flight path consists
of a specific subset of the data used for reconstructing the
images of Fig. 2, whose contents are determined by the
corresponding sampling pattern. The middle and right
columns in Fig. 4 show the magnitude of the corresponding
point spread functions (PSFs) given by the inverse Fourier

transform of the sampling patterns. The middle column
shows magnitude on a linear scale, while the right column
shows magnitude on a logarithmic scale to elucidate low-
level detail in the sidelobes. Note that these sampling
patterns, or equivalently PSFs, are used in specifying the
observation matrix T in (1). The following Section presents
results based on data associated with each of these flight
paths.

4.3 Region-enhanced imaging results

In all of the experiments presented here, for region-
enhanced imaging we use p ¼ 1 in (2). For simplicity, we
set l1 ¼ l2 in all examples. This relative parameter choice
appears to yield a region-enhanced image, together with
suppression of some background artefacts. We choose the
absolute values of these parameters based on subjective
qualitative assessment of the formed imagery. Automatic
selection of these parameters is an open research question.
We do not specify the absolute values of l1 and l2 in the
examples we present here, since those numbers are not that
meaningful, as they depend on the scaling of the data used.

First consider the flight path corresponding to the
sampling pattern in the bottom row in Fig. 4.
The corresponding ‘conventional’ image of the VFY-218,
obtained by direct Fourier transformation of the data, is
shown in the top row of Fig. 5a. Points in the spatial
frequency domain where observations are unavailable are
set to zero. This is equivalent to convolving the reference
image in Fig. 2a with the PSF in the bottom row of Fig. 4.
As compared with the ‘reference’ image of Fig. 2a, the
direct Fourier reconstruction in the top row of Fig. 5a
contains severe imaging artefacts, resulting in suppression
of some of the characteristic features of the imaged object.
In this example we have not added any noise to the
measurements. Hence, in the context of the observation
model in (1), we do not have any measurement noise. As a
result, one can consider applying the pseudoinverse of the

observation matrix, namely Ty; to the data to obtain a

reconstruction f̂fPINV ¼ Tyg: The pseudoinverse reconstruc-
tion obtained in this manner is shown in the top row of
Fig. 5b. The region-enhanced reconstruction is shown in

a b

Fig. 2 Reference 256 � 256 passive radar images reconstructed
from ‘full’ datasets using direct Fourier reconstruction

a VFY-218
b Falcon 20
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Fig. 3 Data collection geometry

VHF TV stations are represented with �; FM radio stations with þ; and
receiver with a circle; lines represent five hypothetical flight paths
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the top row of Fig. 5c. Both the pseudoinverse and the
region-enhanced reconstructions provide reasonable results
in this noise-free case, with the region-enhanced reconstruc-
tion providing somewhat better suppression of sidelobe
artefacts. It is well-known that pseudoinverse solutions are
very sensitive to noise, especially when the observation
model results in an ill-conditioned matrix. The bottom row
of Fig. 5 shows the direct Fourier, the pseudoinverse, and
the region-enhanced reconstructions, when we have a small
amount of measurement noise. (In these experiments we

have added the noise after bringing the data to the spatial
domain. Ideally, measurement noise should be added to the
phase histories. However, we do not expect that to have any
noticeable effect on our results.) The pseudoinverse solution
breaks down in this case, and is in general useless in
practical scenarios where observation noise is inevitable.
The region-enhanced reconstruction exhibits robustness to
noise, and preserves the characteristic features and shape of
the VFY-218, despite the noisy sparse-aperture
observations.

Fig. 4 Left column shows Fourier sampling patterns associated with five different flight paths; remaining columns show the magnitude of
256 � 256 PSFs associated with sampling patterns; middle column uses linear scale while right column uses logarithmic scale to show fine
detail
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Let us now consider all the flight paths in Fig. 4. In Fig. 6
we show the reconstructions for the VFY-218. In columns
(a) and (b) we have a small amount of measurement noise,
resulting in a signal-to-noise ratio (SNR) of 30 dB. (This
should be interpreted as an average SNR, since data points
may differ in power, yet the measurement noise on each data
point has the same variance.) Figures 6a and b contain the
direct Fourier, and the region-enhanced images, respect-
ively. There is a row-to-row correspondence between Figs. 4
and 6, in terms of the flight paths. We observe that region-
enhanced imaging produces reconstructions that preserve
the features of the reference image of Fig. 2a in a much
more reliable way than direct Fourier imaging. In columns
(a) and (b) of Fig. 7, we show our results for the Falcon 20,
again with data having an SNR of 30 dB, where we can
make similar observations to the VFY-218 case. In columns
(c) and (d) of Figs. 6 and 7, we show reconstructions of the
VFY-218 and the Falcon 20 respectively, for a noisier
scenario where SNR ¼ 10 dB: Region-enhanced imaging
appears to produce reasonable results in this case as well.

We also observe that the direct Fourier images in
the bottom three rows of Figs. 6 and 7, while blurry, are
clearer than the images in the top two rows. Looking at
the corresponding sampling patterns in Fig. 4, the primary
difference seems to be that the paths corresponding to the top
two rows keep the receiver and the transmitters on the same
side of the target, yielding a quasi-monostatic (small bistatic
angle) geometry, whereas in the bottom three rows,
the target flies between the receiver and some of
the transmitters, yielding large bistatic angles and wider
effective coverage in frequency space. There are two
important notes here:

(i) The nature of the artefacts that may be caused by direct
Fourier imaging depends on the flight path of the target
being imaged, and hence may not be easily predicted prior
to data collection. On the other hand, in Figs. 6 and 7 we

observe that region-enhanced images corresponding to
different flight paths are much more similar to each other.
(ii) The paths where the target crosses between the
transmitter and receiver, which give the best performance
with conventional direct Fourier reconstruction in our
simple simulation as shown in the bottom three rows of
Figs. 6 and 7, would be extraordinarily difficult to make
work in practice. The direct signal from the transmitter is
orders of magnitude larger than the reflected path. Passive
radar systems usually alleviate this problem by placing the
transmitter in an antenna null (either due to the physical
shape of the antenna, or using adaptive nulling techniques in
the case of an electronically beamformed array), and maybe
also employing some additional RF cancellation techniques.
Even with such techniques, the dynamic range requirements
are stressing. It would be quite challenging to simul-
taneously null the direct path signal and receive the reflected
signal from an aircraft that is close to the transmitter in
angle. For most practical systems, it would be desirable to
stick with the quasi-monostatic ‘over the shoulder’
geometry exemplified by the top two rows of Figs. 4, 6
and 7. Therefore it is important to have a technique like
region-enhanced imaging which can generate reasonable
images in such quasi-monostatic scenarios.

On a laptop PC with a 1.80GHz Intel Pentium-4
processor, the average computation time for the region-
enhanced images presented (each composed of 256� 256
pixels) was around 100 seconds, using non-optimised
MATLAB code.

Finally, let us test the robustness of this image formation
technique to an extreme amount of measurement noise.
In Fig. 8, we consider a scenario where SNR ¼ �10 dB; and
for the sake of space, we consider only one of the objects,
namely the VFY-218, and only one of the flight paths,
namely the one in the bottom row of Fig. 4.
The conventional image in Fig. 8a is dominated by noise
artefacts. On the other hand, the region-enhanced image in

a b c

Fig. 5 Reconstructions of VFY-218 based on data restricted to Fourier sampling pattern shown in bottom row of Fig. 4

Top row: noiseless data; bottom row: noisy data
a Direct Fourier reconstruction
b Pseudoinverse reconstruction
c Region-enhanced reconstruction
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Fig. 8b preserves the basic shape of the aircraft, despite
some degradation in the image due to noise.

4.4 Experiments with CLEAN

To illustrate the need for a sophisticated technique like the
region-enhanced approach used in the previous Section we
conclude our experiments with some results using a simple
CLEAN algorithm [7]. In the CLEAN algorithm, one finds

the point with the largest magnitude in the ‘dirty map’
(i.e. the conventional direct Fourier transform reconstruc-
tion) to be CLEANed, shifts the PSF of the system to that
point, and normalises the PSF so that its origin equals the
value of the image at the found peak multiplied by a
parameter called the ‘loop gain’. This shifted and norma-
lised PSF is subtracted from the dirty map. A single point,
corresponding to where the peak was in the dirty map, is
added to a ‘clean map’ which is built up as the algorithm

Fig. 6 Reconstructions of VFY-218 based on data restricted to Fourier sampling patterns shown in Fig. 4

a Direct Fourier reconstructions, SNR ¼ 30 dB
b Region-enhanced reconstructions, SNR ¼ 30 dB
c Direct Fourier reconstructions, SNR ¼ 10 dB
d Region-enhanced reconstructions, SNR ¼ 10 dB
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proceeds. The procedure is iterated until some stopping
criterion is met.

Figure 9 shows the results of 400 iterations of the
CLEAN algorithm on the VFY-218 and the Falcon 20,
based on noiseless data. (The raw CLEAN images are
sparse and may be difficult to reproduce in print in their
original state. Hence, the magnitudes of the radar images
have been blurred by a Gaussian kernel, and the images
are displayed on a square-root scale to make sure that

faint features appear after copying.) We use a loop gain of
0.15, which has been a typical choice in radio astronomy
applications of CLEAN. Again, there is a row-to-row
correspondence between Figs. 4 and 9 in terms of the
flight paths. These results should be compared with those
of direct Fourier reconstruction and region-enhanced
imaging in Figs. 6 and 7. Although CLEAN has excelled
in a number of high-resolution imaging scenarios, it
does not seem to outperform standard direct Fourier

Fig. 7 Reconstructions of Falcon 20 based on data restricted to Fourier sampling patterns shown in Fig. 4

a Direct Fourier reconstructions, SNR ¼ 30 dB
b Region-enhanced reconstructions, SNR ¼ 30 dB
c Direct Fourier reconstructions, SNR ¼ 10 dB
d Region-enhanced reconstructions, SNR ¼ 10 dB
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reconstruction in the context of passive radar imaging. On
the other hand, region-enhanced imaging appears to
provide significantly improved imagery as compared to
both Fourier reconstruction and CLEAN.

5 Limitations and possible extensions

In this paper we have assumed that the direct signal from
the transmitter is available to provide a phase reference for
the reflected signal from the target. More problematically,
we have assumed that we know the passive radar
observation model exactly, which involves knowledge
about not only the transmitters and the receiver, but also
about the flight path of the target being imaged. In practice,
information about the target flight path is obtained from a
tracking system, and will contain uncertainties.
The uncertainties in the estimated path will be manifest as
phase errors in the data. Considering that the phase of the
Fourier transform of an image contains significant infor-
mation, it is important to develop image formation
techniques that can deal with such uncertainties in the
observation model. The SAR community refers to such
techniques as autofocus algorithms [17, 22]. Such an
extension of the image formation technique we presented
constitutes a challenging direction for future work. Maneu-
vering targets that may be rolling, pitching, and yawing in
complex ways would present further challenges, even if the
target positions over time were exactly known.

Our imaging model assumes isotropic point scattering.
However, when the imaged object is observed over a wide
range of angles, the aspect-dependent amplitude of scatter-
ing returns can become significant. Performing region-
enhanced passive radar imaging under aspect and=or
frequency-dependent anisotropic scattering would be an
interesting extension of our work. Along these lines, the use
of time–frequency transforms for wide-angle imaging,
motivated by the passive radar application, is discussed in
[3] although its authors do not explicitly discuss how to
address sparse apertures.

Our final remark is on frequency-dependent scattering.
The tomographic radar model [12, 16] suggests that bistatic
data at one frequency can be used to synthesise data at
multiple lower frequencies. This assumption of frequency-
independent scattering was employed in two places in our
paper. It was used both in the construction of the
observation model, and also in the creation of the simulated
data. Since FISC runs are computationally expensive, we
took advantage of this assumption and conducted a single
run at 211.25MHz. The fidelity of our simulations could be
improved by conducting appropriate separate FISC runs for
all the transmitters employed, even if no changes are made
to the model used to form images from the data. A good
avenue for future work would be to find out how far one
could push the underlying bistatic equivalence theorems
[23–25] in simulating data, before the disadvantage of lost
accuracy due to frequency-dependent scattering exceeds the
advantage of shorter computation times.

6 Conclusions

We have explored the use of an optimisation-based, region-
enhanced image formation technique for the sparse-aperture
passive radar imaging problem. Due to the sparse and
irregular pattern of the observations in the spatial frequency
domain, conventional direct Fourier transform-based ima-
ging from passive radar data leads to unsatisfactory results,
where artefacts are produced and characteristic features of
the imaged objects are suppressed. The region-enhanced
imaging approach we use appears to be suited to the passive
radar imaging problem for a number of reasons. First, due to
its model-based nature, the types of artefacts caused by
conventional imaging are avoided. Secondly, it leads to the
preservation and enhancement of spatially extended object

Fig. 8 Reconstructions of VFY-218 based on data (with
SNR ¼ �10 dB) restricted to Fourier sampling pattern shown in
bottom row of Fig. 4

a Direct Fourier reconstruction
b Region-enhanced reconstruction

Fig. 9 Results of 400 iterations of CLEAN algorithm on noiseless
data with loop gain of 0.15

a VFY-218
b Falcon 20
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features. Thirdly, unlike a number of deconvolution
techniques, it can deal with the complex-valued nature of
the signals involved. Our experimental results based on data
obtained through electromagnetic simulations demonstrate
the effectiveness and promise of this approach for passive
radar imaging.
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9 Appendix: Numerical algorithm for region-
enhanced imaging

To find a local minimum of the optimisation problem in (2),
we use a basic version of the numerical algorithm proposed
in [10]. This algorithm is based on ideas from half-quadratic
regularisation [18], and can be shown to yield a quasi-
Newton scheme with a special Hessian approximation. The
algorithm is convergent in terms of the cost functional. In
this Section, we only present the most basic form of this
algorithm. Our goal here is only to provide a recipe for
implementation, rather than a discussion of the properties of
this numerical scheme.

To avoid problems due to nondifferentiability of the
‘p-norm around the origin when p � 1;we use the following
smooth approximation to the ‘p-norm in (2):

kzkp
p �

XK

i¼1

ðjðzÞij2 þ �Þp=2 ð3Þ

where � � 0 is a small constant, K is the length of the
complex vector z, and ðzÞi denotes its ith element.
For numerical purposes, we thus solve the following
slightly modified optimisation problem:

f̂f ¼ argmin
f

(
kg� Tfk22 þ l1

XN
i¼1

ðjð fÞij2 þ �Þp=2

þl2
XM
i¼1

ðjðHj f jÞij2 þ �Þp=2
)

ð4Þ

Note that we recover the original problem in (2) as � ! 0:
The stationary points of the cost functional in (4) satisfy

Hð f Þ f ¼ THg ð5Þ

where

Hð f Þ¼D THT þ l1L1ð f Þ þ l2F
Hð f ÞHTL2ð f ÞHFð f Þ ð6Þ

L1ð f Þ¼
D
diag

p=2

ðjð fÞij2 þ �Þ1�p=2

( )

L2ð f Þ¼
D
diag

p=2

ðjðHj f jÞij2 þ �Þ1�p=2

( )

Fð f Þ¼D diagfexpð�jf½ð f Þi�Þg

Here f½ð f Þi� denotes the phase of the complex number ð f Þi;
ð�ÞH denotes the Hermitian of a matrix, and diagf�g is a
diagonal matrix whose ith diagonal element is given by the
expression inside the brackets. Based on this observation,
the most basic form of the numerical algorithm we use is as
follows:

Hð f̂f ðnÞÞ f̂f ðnþ1Þ ¼ THg ð7Þ

where n denotes the iteration number. We run the iteration

in (7) until k f̂f ðnþ1Þ � f̂f
ðnÞk22=k f̂f

ðnÞk22 < d; where d>0 is a
small constant.
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ABSTRACT

We consider the problem of jointly forming images and characterizing anisotropy from wide-angle synthetic
aperture radar (SAR) measurements. Conventional SAR image formation techniques assume isotropic scatter-
ing, which is not valid with wide-angle apertures. We present a method based on a sparse representation of
aspect-dependent scattering with an overcomplete basis composed of basis vectors with varying levels of angular
persistence. Solved as an inverse problem, the result is a complex-valued, aspect-dependent response for each
spatial location in a scene. Our non-parametric approach does not suffer from reduced cross-range resolution
inherent in subaperture methods and considers all point scatterers in a scene jointly. The choice of the overcom-
plete basis set incorporates prior knowledge of aspect-dependent scattering, but the method is flexible enough to
admit solutions that may not match a family of parametric functions. We enforce sparsity through regularization
based on the ℓk-norm, k < 1. This formulation leads to an optimization problem that is solved through a robust
quasi-Newton method. We also develop a graph-structured interpretation of the overcomplete basis leading to-
wards approximate algorithms using guided depth-first search with appropriate stopping conditions and search
heuristics. We present experimental results on synthetic scenes and the backhoe public release dataset.

Keywords: synthetic aperture radar, wide-angle imaging, anisotropy, sparse signal representation, image for-
mation, inverse problems

1. INTRODUCTION

Wide-angle synthetic aperture radar (SAR) imaging has come to the fore recently due to advances in navigation
and avionics technologies that permit the synthesis of very long apertures. In principle, wide-angle measurements
allow for the formation of images finely resolved in the cross-range direction. However, conventional image
formation techniques are not adequate for dealing with data collected over wide-angle apertures for a number
of reasons. One issue, and the focus of this paper, that arises with wide-angle apertures is that dependence
of scattering behavior on aspect angle, termed anisotropy, becomes prominent because objects are viewed from
different sides rather than from nearly the same point of view. This is in opposition to narrow-angle imaging,
where it is a fairly reasonable assumption that scattering amplitude is constant over the aperture. In conventional
image formation techniques, the failure to model angle dependence results in an averaging over that variable,
leading to inaccurate scattering estimates. In addition, the anisotropy level of scatterers is not characterized.
Yet, anisotropy characterization may be used as a feature for automatic target recognition and for improved
image formation.

The problem of detecting, estimating, and modeling aspect-dependent scattering behavior has received at-
tention lately. Anisotropy characterization methods may be broadly categorized into those that operate in the
phase history domain, employing parameterizations for angle-dependent scattering, and those that operate in
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the image domain. The general parametric approach is to posit a parametric model for angle dependent scat-
tering, often motivated by electromagnetic theory, and estimate the model parameters, leading to a well-defined
estimation problem.1–4 Image-domain methods use a multiaperture approach for characterizing anisotropy.5–11

Subaperture images are formed, either conventionally or using an enhanced image formation technique, from
segments of the measurements divided in aspect angle. The sequence of subaperture images then gives an in-
dication of the persistence of the scatterers in the scene. It should be noted that the subaperture images have
poorer cross-range resolution than an image formed from the full aperture would. Also, subapertures are of fixed
angular extent; consequently, any subaperture analysis is limited in its ability to characterize anisotropy persis-
tence. Parametric methods and image-domain methods have been shown to work well in different situations.
Notably, the parametric models incorporate much prior information about expected scattering behavior. Also,
the estimated parameters have physical significance, e.g. a parameter corresponding to the physical length of the
scattering mechanism. The image-domain methods are robust, easy to reason about conceptually, and can be
applied to already formed images.

The parametric model formulation of the anisotropy characterization problem is of course predicated on
the correct modeling of natural phenomena. However, parametric models often do not hold in wide-angle
imaging scenarios.10 Within the image-domain methods, a subaperture pyramid framework with overlapping
subapertures of various angular extents moves towards allowing a continuum of aspect angle extents, but is still
limited to full-, half-, quarter-, · · · -, apertures.12 Also, in most techniques, the characterization of anisotropy
in different spatial locations (different pixels) is done independently.

In this paper, we consider an inverse problem formulation utilizing an overcomplete basis and sparsifying regu-
larization for joint image formation and anisotropy characterization in wide-angle SAR. Sparsifying regularization
has been applied to inverse problems including acoustic source localization13 and isotropic SAR imaging,14 but
has not previously been applied to the SAR anisotropy characterization problem. While still taking advantage of
prior information, this method is flexible enough to admit solutions that are not from a prespecified parametric
family. It jointly treats spatial locations and suffers no reduction in cross-range resolution. We also develop a
graph-structured interpretation of our overcomplete basis leading towards novel approximate algorithms to solve
the inverse problem. These algorithms, having reduced memory requirements, may well find application in a
wide variety of sparse signal representation settings beyond the specific problem of anisotropy in SAR.

Sec. 2 describes our framework for bringing the SAR image formation and anisotropy characterization applica-
tion together with the inverse problem–sparsity mathematical formalism. Specifically, an overcomplete expansion
of the point-scattering observation model is proposed, along with a discussion on the choice of vectors for the
expansion. In Sec. 3, we build upon the framework of the previous section, describing methods of solving the
inverse problem while imposing sparsity. A quasi-Newton method14 and greedy graph-structured algorithms are
applied to the problem. In Sec. 4, examples with synthetic data, with a scene composed of realistic canonical
scatterers, and a scene containing the backhoe loader of the Backhoe Data Dome15 are given. We provide some
discussion of the results in the concluding section.

2. OVERCOMPLETE BASIS FORMULATION FOR ANISOTROPY
CHARACTERIZATION AND IMAGE FORMATION

In this section, we describe a formulation of the anisotropy characterization problem which differs from the
subaperture and parametric formulations mentioned in Sec. 1. The problem is approached by constructing an
overcomplete basis and appropriately using the phase history measurements. An overcomplete basis, also known
as an overcomplete dictionary, is more than a basis, i.e. a collection containing more vectors than necessary
to span the space and hence, a linearly dependent set. The idea is to expand the aspect-dependent scattering
function s(θ) at each spatial location as a superposition of basis vectors and then determine coefficients for those
vectors. The first part of the section leaves the overcomplete basis fully general; the section concludes with a
consideration of specific basis choices.

2.1. Anisotropy Characterization Inverse Problem

In two-dimensional imaging, the goal is to determine the complex-valued scattering function of a ground patch
s(x, y), where x and y are coordinates with origin at the center of that ground patch in the range and cross-range
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directions, respectively. However, due to anisotropy, scattering depends on aspect angle θ, with the scattering
function taking the form s(x, y, θ). In our work, we aim to jointly characterize anisotropy and form images
by determining this function s(x, y, θ). The starting point for our overcomplete expansion is the phase history
observation model for point scattering centers with anisotropy, given below.

r (f, θ) =
P∑

p=1

s (xp, yp, θ) exp

{
−j

4πf

c
(xp cos θ + yp sin θ)

}
,

where c is the speed of propagation and f is the frequency of the radar measurements. For a single spatial
location p, we expand the aspect-dependent scattering as follows:

s (xp, yp, θ) =
M∑

m=1

ap,mbm (θ) ,

yielding the following overall M ·P vector basis expansion:

r (f, θ) =
P∑

p=1

M∑

m=1

ap,mbm (θ) exp

{
−j

4πf

c
(xp cos θ + yp sin θ)

}
.

Isotropic scattering is a special case of the above expression with M = 1 and b1(θ) constant.

Assuming that the phase history measurements are at K discrete frequencies and N discrete aspect angles,

let us define length N vectors rk = r(fk, θ), bm = bm(θ), and εk,p = exp
{
−j 4πfk

c
(xp cos θ + yp sin θ)

}
. Then,

taking φk,p,m = bmεk,p, the basis expansion may be simply expressed as:

rk =
P∑

p=1

M∑

m=1

ap,mφk,p,m, k = 1, . . . , K. (1)

The inverse problem is to determine the M ·P complex-valued coefficients ap,m that satisfy or approximately
satisfy the linear equations (1). We choose the number of basis vectors M such that M > N , making the basis
overcomplete.

Now, let us move to matrix-vector equations to simplify the discussion. The collection of all phase history
measurements can be stacked as the following tall N ·K-vector r.

r =







r1

r2

...
rK







.

The set of all basis vectors at a particular frequency fk and spatial location (xp, yp) can be collected into a
matrix Φk,p =

[
φk,p,1 φk,p,2 · · · φk,p,M

]
. In the same manner, the bm vectors can be concatenated into a

matrix B =
[
b1 b2 · · · bM

]
. These two matrices are related by the expression Φk,p = B •

(
εk,p1

T
M

)
, where

M1 • M2 is the elementwise multiplication of matrices M1 and M2, and 1M is the M -vector of all ones. The
factor B is subject to design in the anisotropy characterization procedure, but εk,p is fundamental to the SAR
phase history measurements. The choice of B is discussed in the second half of this section.

Putting together all frequencies and spatial locations, the overall overcomplete basis Φ is:

Φ =








Φ1,1 Φ1,2 · · · Φ1,P

Φ2,1 Φ2,2 · · · Φ2,P

...
...

. . .
...

ΦK,1 ΦK,2 · · · ΦK,P








.
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Figure 1. Illustration of matrix B for N = 7.

Each column of the matrix Φ is a basis vector of the overcomplete basis.

Defining the length M ·P vector of coefficients as a =
[
a1,1 a1,2 · · · a1,M a2,1 · · · aP,M

]T
, the state-

ment r = Φa in matrix-vector form is completely equivalent to the summation form (1). In this form, it is
readily apparent that there are N·K linear equations with M·P unknowns and M > N . Often in the choice of B,
M ≫ N , so regardless of P and K, M ·P > N ·K and the system is an underdetermined set of linear equations.
Our formulation also readily deals with the noisy case: r = Φa+n, where n is an additive noise term. We delay
discussion of solving this inverse problem for a to Sec. 3.

By forming this Φ matrix, the spatial locations are treated jointly within one system of equations, capturing
the combined influence of multiple scatterers on individual angle-frequency measurements. The first M elements
of a depend on the first spatial location p = 1, elements M + 1 to 2M of a depend on the second position p = 2,
and so on. Thus, by setting up the problem in this manner, it is possible to decompose the phase history data
into contributions from different point scatterers at different locations and in the process, characterize amplitude
and anisotropy for each one. As a notational convenience, we define ap to be the M -vector of coefficients
corresponding to position p and:

Φp =







Φ1,p

Φ2,p

...
ΦK,p







to be the subset of basis vectors corresponding to position p. There is no requirement that all spatial locations
under consideration contain a scatterer. If there is no scatterer at a particular spatial location p, then all of the
elements of ap should come out to be zero. It is thus possible to use a grid of pixels as the set of potential spatial
locations where scatterers might exist. We now discuss the specific choice of basis vectors for the overcomplete
basis Φ.

2.2. Choice of Basis Vectors

The overcomplete basis set is to be chosen such that its cardinality is much greater than the dimension of θ and
linear combinations of very few basis vectors accurately represent plausible angle-dependent scattering behaviors.
In the selection of the overcomplete basis Φ, we are free to choose B; the choice of B is a way to incorporate
prior information about angle-dependent scattering.

Methods employing subaperture analysis and parametric models expect to find contiguous intervals in θ for
which there is non-zero scattering. Similarly here, basis vectors are chosen such that contiguous segments of
anisotropy are represented by a single basis vector. However, our formulation allows the representation of non-
contiguous segments through the combination of multiple basis vectors. The bm are chosen to be pulses with
all possible angular extents and all possible starting angles, in other words all widths and shifts. For example, if
N = 7 and the pulse shape is rectangular, then b1, the isotropic vector, is [1 1 1 1 1 1 1]

T
, b2 = [1 1 1 1 1 1 0]

T
,

b3 = [0 1 1 1 1 1 1]
T
, and the final pulse with the finest anisotropy bM = [0 0 0 0 0 0 1]

T
. The bm have unit

maximum amplitude; solving the inverse problem gives the complex amplitude coefficients a. The full set B for
N = 7 is illustrated in Fig. 1. The dots represent entries that have a non-zero value and spaces without dots
represent zero-valued elements. For this choice of basis vectors, M = 1

2N2 + 1
2N . Various pulse shapes, not just
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Figure 2. Graph-structured representation of B.

rectangular pulses, may be seamlessly enlisted in the overcomplete basis, e.g. triangle, raised triangle, windowed
Gaussian, and Hamming pulse shapes.

The collection B described above has a nice, intuitive graph-structured interpretation. The vectors bm can
be arranged as nodes in a graph. The graph is given in Fig. 2 for N = 8, with nodes labeled to the left with
their corresponding b vectors when the pulse shape is rectangular. The labels inside the nodes may be ignored
for now. The graph has N levels, with the root node being the isotropic basis vector; traversing down the graph
corresponds to decreasing angular extent of anisotropy. A graph of this form is referred to as an N -level basis

graph in the remainder of this paper. This structure will be useful in the development of greedy algorithms in
the next section, which discusses methods to solve the inverse problem r = Φa.

3. METHODS OF SOLUTION TO THE INVERSE PROBLEM

From linear algebra, we know that the underdetermined system of linear equations (1) has no unique solution.
Furthermore, the overcomplete basis Φ is designed to allow for the representation of the phase history measure-
ments with few basis vectors. Thus the inverse problem is a sparse signal representation problem – among the
infinite number of solutions, our formulation favors those solutions that are sparse, i.e. those solutions a whose
ℓ0-norm is small.

Finding the solution that minimizes ‖a‖0 is a combinatorial optimization problem, but greedy approaches
such as matching pursuit, and relaxations such as the ℓ1 relaxation matching pursuit have been developed. A
sparsifying regularization approach incorporating a quasi-Newton optimization algorithm, originally developed
for feature-enhanced SAR image formation14 but applicable to a variety of sparse signal representation problems,
is an alternative method. The objective is to find the solution that minimizes the cost function J(a), containing
two terms, a data fidelity term and a sparsifying term. Specifically, the form of the cost function is:

J (a) = ‖r− Φa‖2
2 + α ‖a‖

k

k , k < 1. (2)

The ℓk-norm with k < 1 has a sparsifying effect. The scalar α is a regularization parameter that trades off data
fidelity and sparsity. Details of this robust method may be found in Ref. 14.

In theory, there is no restriction on the size of the problem that the quasi-Newton method can be applied to.
However, the number of columns of Φ, which is O(N2P ) for the overcomplete basis choice discussed in Sec. 2.2,
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is restrictive in terms of memory as well as computation for realistic imaging scenarios with hundreds of angle
samples and spatial locations. In this section we develop a greedy algorithm with reduced memory requirements
taking advantage of the graph structure described in Sec. 2.2.

In the N -level basis graph, the nodes represent the basis vectors in the overcomplete basis. The basis is
designed such that a few or often just one basis vector per position p′ is sufficient to represent the aspect-
dependent scattering function s(xp′ , yp′ , θ). Thus, the sparse signal representation problem may be reformulated
as a search for a node or a few nodes on the basis graph. In addition to finding nodes, complex amplitudes
must also be determined. In general, there are P > 1 spatial locations in the problem, and consequently P

coexisting basis graphs. Thus, to solve the problem, there is not just one search to be done, but P simultaneous
searches. To be most effective, these searches should not be performed independently, but rather should interact
and influence each other.

We propose a search strategy akin to guided depth-first search per basis graph, which follows a single path
down from the root looking for the goal. Each step in the search is based on a heuristic. If the bottom of the
graph is reached without finding the goal, then there is back-tracking also based on the heuristic. Nodes in the
basis graph have two children; when progressing downwards during the search, the heuristic is used to determine
whether the next step is the left or right child node. Unlike standard graph search problems, in our problem it
is not obvious when to terminate the search, so we also need to specify stopping conditions.

Our search heuristic and stopping criterion is founded on solving the inverse problem not with the full set of
basis vectors, but with a subset of basis vectors. Let us consider an m-level basis graph, m ≪ N , with its root
at the current node of the search, termed the guiding graph, as this subset of basis vectors. The search process
will move the guiding graph around through the N -level basis graph.

Intuition about the problem suggests that if the basis vector corresponding to true scattering behavior is
not included in the guiding graph when the inverse problem is solved in a sparsity enforcing manner, then the
resulting solution coefficient vector a will have a non-zero coefficient for the basis vector most ‘similar’ to the
truth. In terms of the N -level basis graph, intuition suggests that if the true coefficient is far down in the basis
graph, but the inverse problem is solved with only basis vectors from a guiding graph near the top of the N -level
basis graph, then coefficients in the first m− 1 levels will be zero and coefficients in level m may be non-zero. In
the same vein, if the guiding graph is rooted below the true coefficient, then the root coefficient may be non-zero
and the coefficients in levels two through m will be zero. Again, intuition suggests that if the guiding graph is
such that it contains the true coefficient, then the true coefficient will be non-zero and the rest of the coefficients
zero.

Before arriving at the search procedure and heuristics, let us first confirm the above intuition through exper-
imentation for N = 400, m = 8, and implicitly P = 1. The 400 angle samples are over the interval [−55◦, +55◦],
the number of frequencies K = 3 with values 7.047 GHz, 7.059 GHz, and 7.070 GHz, and the regularization
parameter α = 150. The 8-level guiding graph contains 36 nodes. In the first experiment, with results in Fig. 3,
the guiding graph is fixed with root at the left-most node of level 200 in the basis graph. The true scattering
behavior is varied from isotropic, to anisotropic with medium angular extent, to anisotropic with just one angle
sample non-zero. In terms of the 400-level basis graph, the true coefficient is varied, starting at the root node,
through all nodes along the left edge of the graph, to the left-most node of level 400, as diagrammed in the left
portion of Fig. 3. The large triangle is the 400-level basis graph, the tiny filled triangle is the fixed guiding graph,
and the arrows along the left edge indicate the variation of the true node. In the two plots, the angular extent
of the true scattering behavior is plotted on the horizontal axis. In the top plot, the coefficient magnitudes for
all 36 coefficients associated with the basis vectors in the guiding graph are plotted on the vertical axis, whereas
in the bottom plot, coefficient magnitudes are indicated by shading (white is zero) and each horizontal strip is
for each of the 36 different coefficients. The coefficient values are obtained by solving the inverse problem using
the quasi-Newton method. Most coefficients are zero for all true scattering behaviors in this experiment. Lines
on the plots are labeled in correspondence with node labels in Fig. 2. The figure shows that in agreement with
intuition, in the regime where the guiding graph is below the true coefficient, the root node (node h) is non-zero.
In the regime where the guiding graph covers the true coefficient, the correct node is non-zero. Also in agreement
with intuition, when the guiding graph is above the true coefficient, the node in the last level closest to the truth
(node a) is non-zero and others are zero.
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Figure 3. Coefficient magnitudes in m-level guiding graph as true scattering behavior is varied from isotropic to highly
anisotropic. The m-level guiding graph is fixed with top node having angular extent 55.3◦ and mth row nodes having
angular extent 53.1◦.
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Figure 4. Coefficient magnitudes in m-level guiding graph as center angle of true scattering behavior is varied. The
m-level guiding graph is fixed, covering center angles [−1.0◦, +1.0◦].

The experiment yielding the results of Fig. 4 has the same setup, but the guiding graph is fixed with root at
the center node of level 200 instead of the left-most node. The true node is varied from left to right across the
basis graph at level 210, three levels below the bottom of the guiding graph, effectively changing the center angle
of the anisotropy, but leaving the extent constant. This figure is organized in the same manner as Fig. 3, but the
horizontal axis features the center angle rather than angular extent. From these results, first it is apparent that
only nodes in the last level of the guiding graph are non-zero, reconfirming results from the previous experiment.
Second, it can be seen that when the truth is to the left of the guiding graph, the left-most node of the mth level
(node α) is non-zero. Similarly, when the truth is to the right, the right node (node κ) is non-zero; when the
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truth is underneath the 8-level graph, nodes along the last level (nodes β-η) are non-zero.

Intuition along with these experimental validations suggests simple stopping conditions and heuristics. One
stopping criterion is to stop when all of the nodes in level m (nodes α-κ) are zero during the search. A heuristic
for the search is also apparent based on the coefficient values of the m nodes in level m. Due to the structure of
the basis graph, each node has two children, so the heuristic will be used to determine whether the next guiding
graph root will be the left child or the right child of the current guiding graph root node. Based on the second
experiment, one reasonable idea is to take the weighted average of the coefficient magnitudes of the bottom
level — the search can then be guided towards the side the average indicates to be stronger. The basis used
in calculating the given heuristic and stopping criterion has O(1) columns for each spatial location and O(P )
columns for P spatial locations, providing savings in terms of memory.

For the case of a single spatial location, P = 1, the algorithm is as follows. The inverse problem r = Φ(i)â(i)

is solved for each iteration i of the search. Then, â(i) is tested for the stopping condition. If the search is to
continue, the heuristic is calculated to determine which one of two choices Φ(i+1) will be. The initial set of basis
vectors Φ(1) is the set with the largest angular extent located in the top m levels of the N -level basis graph. For
the general case of multiple spatial locations, P searches are performed simultaneously, but not independently.

As in the single position case, r = Φ(i)â(i) is still solved on each iteration, but now individual block matrices Φ
(i)
p

evolve based on their corresponding â
(i)
p . For example, the first spatial location’s coefficients â

(i)
1 may satisfy the

stopping condition, in which case Φ
(i+1)
1 = Φ

(i)
1 . The second spatial location’s coefficients may indicate through

the heuristic that the search should proceed to the left child, so Φ
(i)
2 is updated accordingly, and so on. The

overall search terminates when all of the â
(i)
p satisfy the stopping criterion. The P searches are coupled because

the inverse problem is solved jointly for all spatial locations on every iteration. When there are multiple spatial
locations, contributions from different positions interact. As stated, the algorithm allows for contributions from
more than one basis vector per spatial location in the final solution, but those basis vectors must be within the
span of a guiding graph. The guiding graph may be enlarged to allow for contributions from disparate basis
vectors at additional expense, the extreme being to take the guiding graph as the full basis graph.

A number of variations to the basic algorithm presented above may be made that further reduce memory
or computation. First, the back-tracking component of the algorithm may be removed; if the search terminates
before reaching a leaf, then this does not change anything. Without back-tracking, the search becomes greedier
and takes O(N) iterations, whereas with back-tracking there are O(N2) iterations. The guiding graph need not
be an m-level basis graph; for example, the graph may be thinned and include the top level, bottom level, and a
few intermediate levels rather than all intermediate levels. A further approximation can be introduced into the
search without back-tracking to reduce the average-case dependence of the number of total basis vectors on P .
We can fix the contribution from a spatial location after its coefficients have been found. In the algorithm, this
implies that once the stopping criterion is met and maintained for a few iterations at position p, the observation
data r is updated to be r′ = r−Φpap, and Φp is removed from matrix Φ, thereby reducing the number of columns
in Φ. This list of variations is far from exhaustive. The next section gives examples of using our formulation for
anisotropy characterization.

4. EXAMPLES

In this section, we present three examples of anisotropy characterization; the first uses the quasi-Newton method
on a scene with XPatch data of canonical point scattering, the second uses the graph-structured algorithm on
synthetic data, and the last uses the graph-structured algorithm on the backhoe dataset. The first two examples
are mainly for illustrative purposes.

In this first example, there are four spatial locations (pixels) at (0, 0), (0, 1
2 ), (1

2 , 0), and (1
2 , 1

2 ) meters. We use
measurements at K = 3 frequencies 9 GHz, 9.016 GHz, and 9.032 GHz over the N = 50 angle samples equally
spaced over a 98◦ aperture. Illustrating the fact that all spatial locations need not contain point scattering
centers, in this example, two of the spatial locations have no scatterers. The scattering centers at the other two
spatial locations exhibit realistic, i.e. from XPatch predictions, aspect-dependent scattering behavior. We solve
r = Φa using the pseudo-inverse to obtain the least-squares solution as a baseline for comparison. We also use
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Figure 5. Coefficient vectors a from (a) least-squares solution and (b) sparse solution, with real part ◦ and imaginary
part ×.

the quasi-Newton method with the ℓk-norm having k = 0.1 and the regularization parameter α = 1 to obtain a
solution.

Fig. 5 gives stem plots that show the values of the coefficients in the solution a vectors, the least-squares
solution on the left and the solution with regularization on the right. The stems topped by ◦ give the value of
the real part and the stems topped by ×, the imaginary part. For N = 50, there are M = 1275 basis vectors per
spatial location; the subplots enumerate the corresponding 1275 coefficients from left to right as in Fig. 1. As
expected, the a vector on the right is much sparser due to the ℓ0.1 regularization term. In fact, the coefficients
corresponding to spatial locations without scattering centers are all nearly zero in the sparse solution, whereas
the least-squares solution has many large-valued coefficients.

Now let us inspect what these coefficients map to in terms of estimated s(xp, yp, θ) functions. Fig. 6 shows
the magnitude of the solutions in blue overlaid on the underlying truth in black. The sparse solution is more
accurate in its representation of the underlying truth than the least-squares solution, a consequence of the fact
that basis vectors of contiguous anisotropy are fairly good at sparsely representing realistic aspect-dependence. It
should be noted that the least-squares solution perfectly matches the measurement vector r, whereas the sparse
solution does not, but data fit is not our primary concern. It should also be noted that if we were to perform
image formation without anisotropy characterization, we would have four likely inaccurate pixel values, rather
than four accurate functions of θ.

The first example illustrated the importance of sparsity and gave an indication that contiguous basis vectors
are a reasonable choice. The second example, with 7 scattering centers and N = 1541 angles, shows the operation
of the graph-structured algorithm using synthetic data. The aperture is from −10◦ to +100◦ and the scattering
centers have anisotropy of varying angular extents with a raised triangle pulse shape. Note that in this example,
we use raised triangle pulse shapes for the bm vectors as well. As a preprocessing step, we first locate the
scattering centers by peak extraction on a conventionally formed image. In this example, the extracted scatterer
locations are within 4 mm of the truth, with the main source of error being the discrete grid of pixels in the
conventionally-formed image. The conventional image and the extracted scattering center locations are shown
in Fig. 7c. Then with P = 7 and using measurements at the K = 3 frequencies 7.047 GHz, 7.059 GHz, and 7.070
GHz, we run the graph-structured algorithm without back-tracking and with the search heuristic and stopping
condition discussed in Sec. 3. The guiding graph has 16 levels.

The simultaneous searches are shown in Fig. 7a, where the 1541-level basis graph is indicated by the triangular
outline. The resulting s(xp, yp, θ) estimate magnitudes are shown in Fig. 7b as blue lines overlaid on the black
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Figure 6. Magnitude of characterized anisotropy from (a) least-squares solution and (b) sparse solution, plotted in blue
overlaid on truth.
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Figure 7. Results of example using graph-structured algorithm: (a) search paths, (b) solution s(xp, yp, θ) overlaid on
truth, and (c) color-coded anisotropy center.
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Figure 8. Results of backhoe example using graph-structured algorithm: (a) color-coded anisotropy center, and (b)
sample characterized anisotropies.

truth. The estimates are nearly indistinguishable from the true anisotropies. The center of the anisotropy
is indicated in Fig. 7c as a color, where dark red corresponds to the center angle closest to −10◦ and blue
corresponds to the center angle closest to 100◦, with the colors cycling red to green to blue. The results are
accurate, but moreover, the search paths are fairly direct and would not require back-tracking even if it were
available. We see that the formulation is not restricted to rectangle-shaped basis vectors — other pulse shapes
may be used as well, as long as they can be used to sparsely represent plausible anisotropy.

The final example, with a dataset from the Backhoe Data Dome,15 uses the same algorithm as the previous
example. The data also has N = 1541 angle samples over an aperture from −10◦ to +100◦. P = 75 spatial
locations are extracted from a composite image of conventionally-formed subaperture images11 and then the
greedy graph-structured algorithm is applied to the data with K = 3 and frequencies 7.047 GHz, 9.994 GHz,
and 12.953 GHz. The solution is displayed in Fig. 8a, also color-coded. The characterized anisotropies of a few
scattering centers are also shown in Fig. 8. The solid line indicates our solution, whereas the asterisks show
subaperture pixel values from conventional imaging with overlapping 20◦ subapertures.11 The vertical axes for
the line and the set of asterisks are scaled differently to allow comparison. For the first two scattering centers, the
subaperture pixel values indicate contiguous extents of anisotropy and our algorithm also detects strong responses
at those angles. However, the type of solution we are able to produce is more detailed in θ, especially because the
results indicate that anisotropy persistence is not matched to subaperture width. In the third scattering center,
the subaperture pixel values indicate two disjoint segments of anisotropy. However, the greedy algorithm may
only use basis vectors that lie within a guiding graph to explain the anisotropy. Nevertheless, our algorithm does
the best it can to produce two peaks via a positive-valued guiding graph root coefficient and negative-valued leaf
coefficient. Multiple candidate search is an approach that would allow for better performance in such instances.

5. CONCLUSION

We have presented a novel approach to SAR image formation. The methodology is general in that it can be
applied to a wide variety of overcomplete basis representations. Here we have focused on its utility in describing
anisotropic scattering behavior of complex reflections in wide-angle SAR data. The primary advantage of the
approach derives from a convenient organization of the basis vectors. The structure allows for a computationally
efficient search for the solution of a large sparse regularized inverse problem by evaluating a subset of basis
vectors at each iteration. The method demonstrated excellent results on synthetic data, but more importantly,
characterized anisotropy to a level of fine detail not possible with subaperture analysis on complex scenes such as
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the backhoe dataset. Future work will consider extending the formulation to incorporate another issue that arises
in wide-angle imaging, i.e. that certain scattering mechanisms appear to move or migrate in spatial location as
a function of aspect angle. Also, we may consider extending the cost function (2) to include preferences other
than just sparsity among basis coefficients.
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ABSTRACT

Wide-angle synthetic aperture radar imaging presents numerous
challenges, but also opportunities to extract object-level infor-
mation. We present a methodology using an overcomplete dic-
tionary and sparsifying regularization to characterize anisotropy
(aspect-dependent scattering amplitude), and migration (aspect-
dependent scattering center spatial location), into the image for-
mation process. We also introduce regularization terms in the
normal parameter space of the Hough transform that favor so-
lutions with sparsity along a line and consequently parsimony
in the representation of glint anisotropy. The characterization
of scatterer migration directly gives information about size and
shape of objects in the spatial domain and such information can
also be inferred from the parsimonious representations we ex-
tract for glint-type scattering.

1. INTRODUCTION

The ultimate goal in imaging is understanding what is out in the
scene being observed. First steps towards this goal include the col-
lection of measurements and the formation of imagery from those
measurements. In synthetic aperture radar (SAR) imaging, data
collected over wide-angle apertures permits, in principle, the re-
construction of images with high cross-range resolution. However,
conventional SAR image formation techniques, such as the polar
format algorithm [1], do not account for certain physical phenom-
ena that arise in wide-angle imaging, leading to inaccurate scatter-
ing estimates. In addition, conventional techniques do not extract
all possible information from SAR measurements that could be
used in higher level scene understanding tasks. In this paper, we
propose methods that mitigate these shortcomings of conventional
image formation techniques.

In spotlight-mode SAR, measurements are acquired using a
radar set mounted on an aircraft. As the aircraft proceeds along its
flight path, the radar is continually steered so that it illuminates the
same ground patch from all aspect angles of data collection. Re-
cent advances in navigation and avionics technologies now allow
long flight paths, or wide-angle apertures. However, dependence
of scattering behavior on aspect angle, termed anisotropy, becomes
an issue because objects are viewed from different sides rather

This work was partially supported by the Air Force Research Lab-
oratory under Grant FA8650-04-1-1719, and Grant FA8650-04-C-1703
(through subcontract 04079-6918 from BAE Systems Advanced Informa-
tion Technologies). The first author is supported by a National Science
Foundation Graduate Research Fellowship.

than from nearly the same point of view. For example, a mirror or
flat metal sheet may reflect strongly when viewed straight on, but
barely reflect at all from an oblique angle. This is in opposition to
narrow-angle imaging, where it is a fairly reasonable assumption
that scattering amplitude is constant over the aperture. In addition,
certain scattering mechanisms, such as tophats and cylinders, ap-
pear to migrate or move in their spatial location as a function of
aspect angle with wide-angle apertures [2].

There are various approaches for anisotropy characterization
including parametric methods [3, 4, 5] and methods based on sub-
aperture analysis, in which the full collection of SAR measure-
ments is divided into smaller segments covering only parts of the
wide-angle aperture and a different image is formed for each sub-
aperture [6, 7, 8]. In our previous work, we developed a method
for joint image formation and anisotropy characterization based on
an overcomplete dictionary and sparsifying regularization [9]. The
characterization of migratory scattering has not been given much
heed in previous work. In the first part of this paper, we extend our
overcomplete dictionary for characterizing anisotropy to account
for migratory scattering.

Non-migratory scattering exhibits an interesting relationship
between anisotropy and physical extent in the spatial domain. Scat-
tering response over only a very small range of aspect angles,
known as glint or flash, arises from long, flat plates, and the thinner
the anisotropic response, the longer the spatial extent of the plate.
The aspect angle of the glint is also the orientation of the object in
space. In the second part of the paper, utilizing Hough transform
properties, we introduce new regularization terms to favor solu-
tions that concentrate the representation of glint anisotropy across
a spatially distributed area into a single scatterer.

2. SAR OBSERVATION MODEL WITH ANISOTROPIC
AND MIGRATORY SCATTERING

The response to radar illumination by the ground patch being ob-
served may be expressed as a complex-valued scattering function
s(x, y), wherex andy are coordinates on the ground. It is this
s(x, y) that conventional image formation techniques attempt to
recover. With anisotropy, the scattering function also depends on
aspect angleθ, and is thuss(x, y, θ). At typical operating frequen-
cies of SAR, it is a reasonable assumption that scattering comes
from a discrete set of points rather than a continuous field [10].
Measurements are obtained in what is known as the phase history
domain. Setting aside migratory scattering in this preliminary ex-
position, withP point-scatterers the measurements and scattering
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function are related by the following expression:

r (f, θ) =

PX
p=1

s (xp, yp, θ) e−j 4πf
c (xp cos θ+yp sin θ), (1)

wherec is the speed of propagation andf is frequency. Measure-
ments are discrete, atN anglesθn andK frequenciesfk.

Another domain in which SAR data may be viewed is the
range profile domain. The phase history domain and range pro-
file domain are related by a one-dimensional Fourier transform;
ideally, the range profile expression is:

R̂ (ρ, θ) =

PX
p=1

s (xp, yp, θ) δ (ρ− xp cos θ − yp sin θ) , (2)

whereρ parameterizes distance along the line of sight of the radar
at aspect angleθ, but because measurements are at a finite set of
frequenciesfk within a certain frequency band, there are sidelobe
effects. For a single point-scatterer, ideally the range profile is
non-zero on a sinusoidρ(θ) = x0 cos θ + y0 sin θ.

Now, let us consider migratory scattering. Migration occurs
when radar pulses bounce back from the closest surface of a phys-
ical object, but the closest surface of the object is different from
different viewing angles; the physical object is not really mov-
ing, but appears to move in the measurement domain. For the
moment restricting ourselves to migration around a circle with
center(xc, yc) and radiusR0, which could be due to a cylin-
der or tophat, we note that the point on the circle at angleθ is
(xc − R0 cos θ, yc − R0 sin θ). Thus, the sinusoid expression
changes to:

ρ(θ) = (xc −R0 cos θ) cos θ + (yc −R0 sin θ) sin θ

= xc cos θ + yc sin θ −R0. (3)

Another way to come upon this expression is to consider the fact
that at all aspect angles, the surface of the circle is closer to the
radar byR0 than the center. For any general convex shape of mi-
gration, the formxc cos θ + yc sin θ −R(θ) is taken.

In discussing stationary scattering centers, the spatial location
(xp, yp) and the scattering centerp are synonymous. However,
care must be taken when discussing migratory scattering centers
— some invariant location(x̄p, ȳp) is needed to discuss the func-
tion s(x̄p, ȳp, θ) for example. We take this invariant spatial lo-
cation(x̄p, ȳp) to be the location the scattering center appears at
whenθ = 0. Whenθ = 0, x̄ = xc − R(0) andȳ = yc, leading
to the following expression for phase history with migratory point
scatterers:

r (f, θ) =

PX
p=1

s (x̄p, ȳp, θ) e−j 4πf
c ((x̄p+Rp(0)) cos θ+ȳp sin θ−Rp(θ)). (4)

3. OVERCOMPLETE DICTIONARY AND SPARSIFYING
REGULARIZATION FORMULATION

The approach we followed in [9] for anisotropy characterization
was to construct an overcomplete expansion of aspect-dependent
scattering withM > N atoms per spatial location. We extend that
approach here by takingLM atoms per spatial location, where

we do a further expansion in radius of migration withL different
values for the radius. (We have once again restricted ourselves to
the important case of migration in a circle.)

Specifically, we havePLM coefficientsap,l,m and the over-
complete expansion in the phase history domain is as follows:

r (f, θ) =

PX
p=1

LX
l=1

MX
m=1

ap,l,mbm (θ) e−j 4πf
c ((x̄p+Rl) cos θ+ȳp sin θ−Rl).

(5)

Thebm(θ) represent different persistence widths and center angles
of contiguous intervals of anisotropy; more details may be found
in [9]. Making the appropriate definitions, the expansion into the
overcomplete dictionary can be expressed as:

r (f, θ) =

PX
p=1

LX
l=1

MX
m=1

ap,l,mφp,l,m (θ) . (6)

Each atomφp,l,m(θ) corresponds to a different invariant spatial
location, different radius of migration, and different anisotropy.
By appropriately stacking the phase history measurements into an
NK × 1 vectorr, concatenating all of the atoms into anNK ×
LMP matrixΦ, and taking the coefficients as anLMP×1 vector
a, we can also write the overcomplete expansion asr = Φa. The
anisotropy and migration characterization problem is thus reduced
to solving the inverse problemr = Φa for the coefficient vector
a.

SinceΦ is overcomplete, we have an underdetermined set of
linear equations and the solution is not unique. However, the dic-
tionary is designed such that a sparse collection of atoms approx-
imates commonly encountered scattering behaviors well. Thus,
from the infinite subspace of solutions, we favor those solutionsa
that are sparse, i.e. having mostly zero coefficients and a few non-
zero coefficients, through a sparsifying regularization approach.

The optimally sparse solution is the solution with the mini-
mum `0-norm, as thè 0-norm simply counts the number of non-
zero entries in a vector; however, finding this sparsest solution is
a combinatorial optimization problem in general. The approach
we take instead is to minimize a regularization cost function of the
form:

J (a) = ‖r−Φa‖2
2 + α ‖a‖k

k , 0 < k < 1, (7)

for which efficient optimization techniques exist [11, 9]. The first
term is for data fidelity and the second term is for sparsity, with
the tradeoff being controlled by the regularization parameterα;
we usek = 0.1 for the norm in the remainder of this paper.

Let us now consider an example that shows the use of the over-
complete dictionary and sparsifying regularization formulation to
characterize both anisotropy and migration within SAR image for-
mation. There is one scattering center in the scene, i.e.P = 1,
with N = 15 angle samples equally-spaced over a14◦ aperture.
The scatterer has a certain anisotropy and has circular migration
with radius0.6 meters. The overcomplete dictionary hasL = 5
radii, with theRl being0, 1

4
, 1

2
, 3

4
, and1 meters. These different

Rl are illustrated in Fig. 1 along with the true radius of migration
overlaid on an image of the scene formed by conventional process-
ing.

The inverse problem is solved withK = 5 frequencies 9.00
GHz, 9.49 GHz, 9.98 GHz, 1.05 GHz, and 1.10 GHz, by the quasi-
Newton optimization method of [11]. As a baseline for compari-
son, we also solve the inverse problem by least-squares, i.e. the
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Figure 1: Illustration of atoms of different radii of migration along
with true radius of migration, the circle with dots, overlaid on con-
ventionally formed image.
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Figure 2: Magnitude of coefficients in (a) least-squares solution
and (b) sparsifying regularization solution.

regularization parameterα = 0 in (7) and we take the minimum
norm solution given by(ΦHΦ)−1ΦHr. The coefficient magni-
tudes of the two solutions are shown in Fig. 2 as a stem plot; for
ease of interpretation, the coefficientsal corresponding to each of
the L = 5 different radii have been put into separate subplots.
Within each subplot, the different coefficients correspond to dif-
ferent types of anisotropy; the coefficients on the left correspond
to more isotropic scattering and those to the right, to thin, highly
anisotropic scattering. In the least-squares solution many coef-
ficients are non-zero in all of the different radii, whereas in the
sparse solution, two of the radii,R3 = 1

2
andR4 = 3

4
, have non-

zero coefficients corresponding to the true anisotropy. The true ra-
dius, 0.6, falls between1

2
and 3

4
, so the solution follows expected

behavior.
Through the use of atoms in our overcomplete dictionary that

correspond to migratory scattering centers, we are able to parsi-
moniously represent this phenomenon, and consequently model a
region in space rather than a single point or pixel because the area
covered by the migration is fully described by the atom. The so-

lution compactly represents the scatterer at the object level. Sim-
ilarly, we would like to find parsimonious representations for sta-
tionary scattering centers that cover extended regions in the spatial
domain. An approach proposed in the next section uses properties
of the Hough Transform.

4. REGULARIZATION IN HOUGH SPACE FOR
GLINT ANISOTROPY

Pixels may be treated as scattering centers, but this ignores the
fact that a single point scatterer may correspond to a spatially dis-
tributed scattering mechanism. One important type of scattering
behavior, glint, which comes from long, flat metal plates is non-
migratory, has very thin anisotropy, and corresponds to a line seg-
ment in image space oriented at the same angle as the center angle
of the anisotropy. A parsimonious representation ought to explain
scattering with a single scatterer rather than a collection of scat-
terers along a line. We extend the regularization cost function (7)
to favor sparsity along lines in addition to favoring sparsity among
atoms, making use of Hough transform properties and the geomet-
ric interpretation they lend.

The Hough transform, which is not a transform in the strict
sense, but a method in image analysis for detecting straight lines
in binary images [12], uses aρ-θ normal parameter space that is
directly related to the SAR range profile domain, given in expres-
sion (2). The normal parameterization uses the angle of a line’s
normalθ and its algebraic distanceρ from the origin of the image.
With x andy as coordinates in the image plane, the equation for a
line isx cos θ + y sin θ = ρ.

The parameter space, theρ-θ plane, and the image space, the
x-y plane, are related by the following properties: a point in im-
age space corresponds to a sinusoid in parameter space and a set
of points lying on the same line in image space corresponds to
a set of sinusoids that intersect at a common point in parameter
space. Also, a point in parameter space corresponds to a line in
image space and a set of points lying on the same sinusoidal curve
in parameter space correspond to a set of lines that intersect at a
common point in image space. The Hough transform method of
detecting straight lines makes use of these properties.

Let the binary image be such that the background is made up
of zero-valued pixels and lines of one-valued pixels. Parameter
space is gridded intoρ-θ cells and each one-valued pixel ‘votes’
for all cells along the sinusoid corresponding to that pixel. If many
one-valued pixels are along a common straight line, then their cor-
responding sinusoids will intersect in one parameter space cell.
With parameter space cells acting as accumulators of votes from
image domain pixels, a cell with a high count indicates a line in
image space. The approach has been extended with different pa-
rameters looking for different parameterized curves.

In [13], a Hough space sparsifying regularization approach
is employed to enhance and detect straight lines in positive real-
valued images by imposing sparsity when taking the image data
to theρ-θ plane. Parameter space cells with small counts are sup-
pressed and cells with large counts are enhanced; thus, non-line
features are suppressed and line features are enhanced in image
space, making the line detection problem painless. The goals in
this paper are different from those in [13] and consequently, the
regularization terms are of a different flavor as well: the Hough
transform conception of accumulators to detect lines is turned on
its head.

The idea is to have sparsity in each cell of theρ-θ plane rather
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than having sparsity among cells. As points on a line in the image
domain transform to sinusoids coincident at a point in the range
profile domain, sparsity among scatterers in individualρ-θ cells
achieves the goal of sparsity among points on a line. This qualita-
tive description is translated into mathematical terms in the sequel.

The regularization costJ(a) is a function of the coefficient
vectora; consequently, in order to work with range profiles, the
coefficients must be mapped to that domain first.P separate range
profile planes, coming from each of theP scatterers, are required
to achieve sparsity among the scatterers inρ-θ cells.

As mentioned in Sec. 2, the range profile domain and the phase
history domain are a single one-dimensional discrete Fourier trans-
form away from each other. Also, the overcomplete dictionaryΦ
is exactly the mapping from coefficients to the phase history do-
main. However, taking the coefficients through the overcomplete
dictionary inherently sums the contributions of each spatial loca-
tion coherently, which is undesirable when seeking to keep data
from theP scatterers separate. Hence, in mapping from coeffi-
cients to a set ofP range profile planes, a block diagonal matrixΦ̃
with Φp, submatrices containing atoms corresponding to spatial
locationp, on the diagonal is used in conjunction with a matrix
F, which is like a DFT matrix. The values are exactly those that
would appear in aK × K DFT matrix, but rearranged to fill an
NK by NK area and replicatedP times.

Additionally, to select data from a cell(ρ = ρk, θ = θn) in
the range profile domain, a matrixSk,n with P rows andNKP
columns composed of mostly zeroes andP ones is used. Specifi-
cally, Sk,n is defined as follows with entries indexed by rowi =
1, . . . , P , and columnj = 1, . . . , NKP :

(Sk,n)i,j =

(
1, j = (k − 1)N + n + (i− 1)NK

0, otherwise
. (8)

Thus, a lengthP vector of values for an individual range pro-
file cell (ρk, θn) is obtained by the multiplicationLk,na, where
Lk,n = Sk,nFΦ̃, and hasP rows andMP columns. TheLk,n

matrices need not be calculated through matrix multiplication; the
FΦ̃ product may be calculated analytically in a straightforward
manner based on the discrete Fourier transform of the atoms and
the operationSk,n simply involves extracting out the correct ele-
ments from the Fourier transform result.

It follows that for sparsity among scatterers in cell(ρk, θn), a
regularization term of the form‖|Lk,na|‖0.1

0.1 is used. Then, contin-
uing to maintain sparsity among atoms, the overall regularization
cost function including sparsity in all range profile cells is:

Jline (a) = ‖r−Φa‖2
2 + α0 ‖a‖0.1

0.1 + α1

KX
k=1

NX
n=1

‖|Lk,na|‖0.1
0.1,

(9)
where we have taken the regularization parameters for all cells to
be the same. This extended cost functionJline(a) may be mini-
mized using the quasi-Newton method of [11].

We now present an example that uses XPatch data of glint type
anisotropy and shows how the extended cost function with both
sparsifying terms, the original one and the new one, leads to a par-
simonious representation, whereas a cost with either of the sparsi-
fying terms alone with the data fidelity term does not. The scene
contains a single scatterer located at(0, 0) with aspect-dependent
scattering as shown in Fig. 3. There areN = 20 angles over a19◦

aperture centered around zero degrees. There is a spike in scatter-
ing response at5.5◦, which is the flash or glint. The figure shows

θ

m
ag

ni
tu

de

Figure 3: True scattering magnitude of glint anisotropy from
XPatch data, with lines for ten different frequency measurements.

the magnitude of the scattering at ten different frequencies in this
XPatch data — since there is almost no frequency dependence, the
lines are nearly indistinguishable.

In a conventionally formed image using data with a bandwidth
of 2 GHz, Fig. 4, the glint shows up as a spread out line segment
oriented at5.5◦. From this image,P = 24 pixels are chosen as
spatial locations for joint anisotropy characterization and image
formation. The spatial locations range from− 9

90
m to− 1

90
m in

thex direction and from− 1
90

m to 2
90

m in they direction, with a
uniform pixel spacing of1

90
m in both directions.

Then, withK = 10 frequencies in the range 9.00 GHz to 9.14
GHz, the anisotropy is characterized with three different pairs of
values for the regularization parametersα0 andα1. The first set
of regularization parameters isα0 = 30 andα1 = 0, i.e. without
the extension to the cost function given in (9). The magnitudes of
the coefficients for the twenty-four spatial locations are plotted in
Fig. 5, arranged as in an image, and the scattering function mag-
nitudes for each of the spatial locations are given in Fig. 6, also
arranged as in an image. The anisotropy has been characterized
correctly, but split up and assigned to all of the spatial locations.
This solution is parsimonious in atoms per spatial location, but is
not parsimonious in the number of spatial locations used.

The second set of regularization parameters isα0 = 0 and
α1 = 20: just sparsity among spatial locations along a line. As
seen in Fig. 7, the solution in this case has non-zero coefficients at
just one spatial location. This spatial location is the closest among
all P = 24 spatial locations to(0, 0), the true location of the scat-
terer. However, there are many coefficients with large values, not
just one as in the previous case. The coefficients and correspond-
ing atoms are such that they add to match the true anisotropy well,
as seen in Fig. 8, but the representation is not parsimonious in
terms of atoms per spatial location.

The third set of parameters is chosen such that both sparsifying
terms in the regularization cost function are significant. Withα0 =
30, α1 = 20, the solution coefficient vector has only one non-zero
coefficient seen in Fig. 9. The coefficient corresponds to an atom
with a single non-zero angle sample, shown in Fig. 10, and is thus
parsimonious in both spatial locations and atoms.
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Figure 4: Conventionally formed image of glint anisotropy.

Figure 5: Solution coefficients withα0 = 30, α1 = 0.

Figure 6: Solution scattering magnitudes withα0 = 30, α1 = 0.

Figure 7: Solution coefficients withα0 = 0, α1 = 20.

Figure 8: Solution scattering magnitudes withα0 = 0, α1 = 20.

Figure 9: Solution coefficients withα0 = 30, α1 = 20.
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Figure 10: Solution scattering magnitudes withα0 = 30, α1 =
20.

The original sparsifying regularization cost function has the
effect of favoring solutions with sparsity among spatial locations
because the vectora has coefficients associated with all spatial lo-
cations. The additional regularization terms of this section also
favor sparsity among spatial locations because spatial locations
along a line are general spatial locations as well. However, the
distinguishing characteristic of the additional regularization terms
is that the favored sparsity is specially adapted for the object-level
idea that individual point-scattering centers affect linear regions in
space.

Through the example it has been seen that both types of spar-
sity — sparsity among atoms and sparsity among spatial locations
along a line — are necessary in the regularization in order to re-
cover a solution that represents the scattering as coming from a
single point and with very thin anisotropy explained by a single
atom. With this representation, spatial properties about the object
being imaged, such as orientation and physical extent, may be in-
ferred; thin anisotropy corresponds to objects of large physical ex-
tent and wider anisotropy to objects with smaller physical extent.
Also, the center angle of anisotropy indicates orientation in the
spatial domain. Although the same object-level inferences could
have been made with theα1 = 0 solution, in that case,P such
objects would be indicated rather than one and havingP objects
all with large spatial extent almost on top of each other does not
make physical sense. Points have more meaning than just pixels
with aspect-dependent amplitudes.

5. CONCLUSION

We have extended our overcomplete dictionary formulation for
anisotropy characterization in SAR imaging to include atoms rep-
resenting migratory scattering. By doing so, we move beyond stan-
dard pixel-based imaging and are able to describe structures with
greater semantic meaning within the image formation process. We
are also able to find solutions with higher-level meaning in glint-
type stationary scattering through an extension to the sparsifying
regularization cost function with additional regularization terms
operating in Hough space. These object-level descriptions take us
a step farther in the scene understanding chain than conventional
image formation while also taking into account phenomena such
as anisotropy that cause inaccuracies in conventional methods.

As presented, our approach for the characterization of migra-
tion limits solutions to migration along a circle, which often arise
with tophats and cylinders. The approach can be further extended
to handle non-circular migration through the use of subapertures
— finding the best circle over a subaperture and then stitching to-
gether circular segments over the full wide-angle aperture. Also,
glint and sparsity among points on a line is just one imaging sce-
nario, but an important one; other extensions to the regularization
cost function for other scattering phenomena and objects may be
developed, either based on properties of the Hough normal param-
eter space or other parameter spaces and domains.
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Abstract— Sparse signal representations and approximations
from overcomplete dictionaries have become an invaluable tool
recently. In this paper, we develop a new, heuristic, graph-
structured, sparse signal representation algorithm for overcom-
plete dictionaries that can be decomposed into subdictionaries
and whose dictionary elements can be arranged in a hierarchy.
Around this algorithm, we construct a methodology for advanced
image formation in wide-angle synthetic aperture radar (SAR),
defining an approach for joint anisotropy characterization and
image formation. Additionally, we develop a coordinate descent
method for jointly optimizing a parameterized dictionary and
recovering a sparse representation using that dictionary. The mo-
tivation is to characterize a phenomenon in wide-angle SAR that
has not been given much attention before: migratory scattering
centers, i.e. scatterers whose apparent spatial location depends
on aspect angle. Finally, we address the topic of recovering
solutions that are sparse in more than one objective domain
by introducing a suitable sparsifying cost function. We encode
geometric objectives into SAR image formation through sparsity
in two domains, including the normal parameter space of the
Hough transform.

Index Terms— sparse signal representations, overcomplete dic-
tionaries, optimization methods, tree searching, inverse problems,
synthetic aperture radar, Hough transforms

I. INTRODUCTION

WHETHER for filtering, compression, or higher level

tasks such as content understanding, the transformation

of signals to domains and representations with desirable prop-

erties forms the heart of signal processing. The last decades

have seen overcomplete dictionaries and sparse representations

take a place in the processing of signals such as those

that are multiscale in nature or can be traced to physical

phenomena. By sparse, it is explicitly meant that a signal can

be adequately represented using a small number of dictionary

elements. Sparse signal representation and approximation has

proven successful in solving inverse problems arising in a
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variety of application areas such as array processing [1], time-

delay estimation [2], coherent imaging [3], electroencephalog-

raphy [4], astronomical image restoration [5], and others.

Inverse problems may be cast as sparse signal representation

or approximation problems in conjunction with dictionaries

whose elements have a physical interpretation, having been

constructed based on the observation model of a particular

application.

Representing a signal g ∈ C
N using an overcomplete dictio-

nary {φ1, φ2, . . . ,φM}, M > N involves finding coefficients

am such that g =
∑M

m=1 amφm. Since the dictionary is

overcomplete, there is no unique solution for the coefficients;

additional constraints or objectives, e.g. sparsity, are needed

to specify a unique solution. Among other properties, spar-

sity and overcomplete dictionaries have been known to deal

well with undersampled data, and provide superresolution,

parsimony, and robustness to noise. Traditionally, sparsity is

measured using the `0 criterion, which counts the number of

non-zero values. The problem of finding the optimally sparse

representation, i.e. with minimum ‖a‖0
0 where a is the set

of coefficients taken as a vector in CM , is a combinatorial

optimization problem in general. Due to the difficulty in

solving large combinatorial problems, greedy algorithms such

as matching pursuit [6] and relaxed formulations such as basis

pursuit [7] that are computationally tractable have been de-

veloped for general overcomplete dictionaries. Methodologies

such as these have been proven to produce optimally sparse

solutions under certain conditions on the dictionary [8]–[10].

A sparse signal approximation is a set of coefficients subject

to a sparse penalty such that ‖g−
∑M

m=1 amφm‖2
2 is less than

a small positive constant.

Oftentimes, the dictionary elements φm, termed atoms,

are chosen to have a physical interpretation. Atoms may

correspond to different scales, translations, frequencies, and

rotations or the dictionary may comprise subdictionaries, often

given the name molecules [11]. Many popular sparse signal

representation methods and algorithms are general and do not

exploit natural decompositions of the dictionary into molecules

or hierarchical structure that may be present in the collection

of atoms. Some approaches do exist in the literature that take

advantage of structured dictionaries, e.g. [11]–[16]. A main

contribution of this paper is an approximate algorithm for

sparse signal representation, related to heuristic search, that

uses graphs, one per molecule, constructed with atoms as

nodes connected according to hierarchical structure.

In the context of solving inverse problems using sparse

0000–0000/00$00.00 c© 2007 IEEE

51



2 IEEE TRANSACTIONS ON SIGNAL PROCESSING, SUBMITTED

signal representation techniques, the design of atoms based on

the observation model is predicated on complete knowledge of

the observation process. However, it may be the case that the

functional form of the observation process is known, but there

is dependence on some parameter or parameters that is not

known a priori. In this case, it is of interest to both optimize

the dictionary over the unknown parameters and to find sparse

solution coefficients. In overcomplete representation contexts

other than inverse problems, this can be viewed as signal-

dependent dictionary refinement. A second contribution of this

work is a coordinate descent approach that simultaneously

refines the dictionary and determines a sparse representation.

Notationally, we take Φ to be a matrix whose columns are

atoms from the overcomplete dictionary, and Φ(η) to reflect

parametric dependence on the set of parameters η. The matrix

for a dictionary with L molecules is the concatenation of L

blocks: [Φ1 · · ·ΦL] or [Φ1(η1) · · ·ΦL(ηL)].
A fundamental premise of sparse signal representation is of

underlying sparsity in some domain, but signals may be sparse

in more than one complementary, or loosely speaking ‘or-

thogonal,’ domain. Accounting for and imposing simultaneous

sparsity in multiple domains is important for recovering par-

simonious representations. Representational redundancy that

may not be apparent in one domain, but apparent in some

other domain, can be appropriately reduced through sparsity

in that other domain. We consider this problem of sparsity in

more than one domain and, as a third contribution, develop

a formulation whose objective function includes a carefully

composed sparsity term for each domain.

Here we develop a general approach for sparse signal

representation or approximation in which we exploit both

molecular structure in dictionaries and hierarchical structure

within molecules. Additionally, we incorporate dictionary op-

timization and simultaneously sparsity in multiple domains.

While the methods have wider applicability, we focus on

modeling wide-angle spotlight-mode synthetic aperture radar

(SAR) as an illustrative application. As a consequence, we

advance the state of the art in radar imaging as well.

SAR is a technology for producing high quality imagery of

the ground using a radar mounted on a moving aircraft. Radar

pulses are transmitted and received from many points along

the flight path. The full collection of measurements is used

to form images; conventional image formation techniques are

based on the inverse Fourier transform. In principle, very long

flight paths—wide-angle synthetic apertures—which have be-

come possible due to advances in sensor technologies, should

allow for the reconstruction of images with high resolution.

However, phenomena such as anisotropy and migratory scat-

tering, described in the sequel, which arise in wide-angle

imaging scenarios are not accounted for by conventional image

formation techniques and cause inaccuracies in reconstructed

images. As we proceed in the development of novel sparse

signal representation methods for structured dictionaries, we

use the methods described herein in a way that does account

for such phenomenology.

In Section II we describe a heuristic graph-structured al-

gorithm for producing sparse representations in hierarchical

overcomplete dictionaries. Section III expands the scope of

the algorithm to dictionaries composed of molecules. The

motivating application in Section II and Section III is the char-

acterization of anisotropy in wide-angle SAR measurements, a

hurdle that once cleared, not only relieves inaccuracies in im-

age reconstruction, but also provides a wealth of information

for understanding and inference tasks such as automatic target

recognition. Section IV discusses parameterized dictionaries

and the joint optimization of the expansion coefficients and

the atoms themselves. The SAR problem investigated in this

section is of extracting object-level information as part of the

image formation process from migratory scatterers. Section V

introduces the objective of sparsity in multiple domains, fo-

cusing primarily on the two domain case, specifically with

the Hough transform domain and the SAR measurement

domain. The applications in Section IV and Section V take

steps towards bridging low-level radar signal processing and

higher-level object-based processing in ways not seen in the

SAR literature before. Section VI provides a summary of our

contributions.

II. GRAPH-STRUCTURED ALGORITHM FOR

HIERARCHICAL DICTIONARIES

At the outset, we consider a dictionary that does not

decompose into molecules and is known and fixed. We look at

a particular type of dictionary with a hierarchical arrangement

of atoms that permits the construction of a graph with the

atoms as nodes. Then, we describe an algorithm based on

hill-climbing search, a heuristic search method also known as

guided depth-first search. The final part of the section applies

the algorithm to the characterization of anisotropy of a point-

scattering center from wide-angle SAR measurements.

A. Graph Structure

Oftentimes in overcomplete dictionaries, including for ex-

ample wavelet packet dictionaries [17], B-spline dictionaries

[18], and discrete complex Gabor dictionaries [6], the atoms

have a notion of scale and consequently a coarse-scale to fine-

scale hierarchy. Translations or rotations are applied at finer

scales to create sets of atoms that have a common size but are

differentiated in the placement of their region of support; the

regions of support may or may not overlap. Some dictionaries

are constructed dyadically such that the support of a coarser

atom is twice the size of the next finer atom or atoms.

In this work, we consider dictionaries in which the size of

the support changes arithmetically rather than geometrically

between scales. The matrix Φ of such a dictionary for one-

dimensional signals of length N is illustrated in Fig. 1; the

coarsest atom is the first column and the finest atoms are

the N right-most columns. A full set of such atoms with all

widths and all shifts has large cardinality (M = 1
2N2 + 1

2N

atoms), but is appealing for inverse problems because of the

possibility that a superposition of very few atoms, perhaps

just one, corresponds to a physical phenomenon of interest. As

discussed in Section II-C, for SAR anisotropy characterization,

the signal g and atoms φm are such that g is non-zero for

contiguous intervals and zero for other parts of the domain,

and is well-represented by few atoms φm.
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Fig. 1. Illustration of matrix Φ for N = 5. The solid dots (•) indicate a
non-zero value and the empty dots (◦) indicate a zero value.

Fig. 2. Illustration of graph structure for overcomplete dictionary, N = 5.
Coarse-scale atoms are at the top and fine-scale atoms are at the bottom.
Different translations are in order from left to right.

Due to the regular structure of this type of dictionary, we

can take the atoms as nodes and arrange them in a graph. As

shown in Fig. 2, the coarsest atom is the root node, the finest

atoms are leaves, and the graph has N levels. Each node has

two children (except for those at the finest level). It is a weakly

connected directed acyclic graph, with a topological sort that

is exactly the ordering from left to right of the columns in

Φ illustrated in Fig. 1. As we proceed, we make use of the

graph structure, which we term the molecular graph, treating

the sparse signal representation problem as a graph search.

B. Algorithm Based on Hill-Climbing

As mentioned in Section I, many general methods for ob-

taining sparse representations give provably optimal solutions

(under certain conditions), but require the same computation

and memory regardless of whether the dictionary has structure.

As an alternative approach for structured dictionaries, we

propose a heuristically-based technique with reduced com-

plexity. The idea to have in mind during the exposition of

the algorithm is of a small subgraph, given the name guiding

graph, iteratively moving through an N -level molecular graph,

searching for a parsimonious representation. The specifics of

the guiding graph, the search strategy, and search steps are

presented below. Fig. 3 illustrates the central idea of the

algorithm for a small dictionary; in practice, the dictionary

and therefore molecular graph are of much larger cardinality.

We assume that g, the signal to be represented or approxi-

mated, can be composed using a few atoms whose nodes are

close together in the molecular graph under a common parent

node. This assumption is not as restrictive as it may seem:

that the signal has a representation with a few atoms is basic

for sparsity. Contributing nodes are close together in the graph

when the signal is localized in the domain. Prior knowledge

can guide the choice of atom shape and standard families of

Fig. 3. Illustration of search-based algorithm for N = 7, G = 3. The
guiding graph, a subgraph of the full molecular graph indicated by triangular
outline, is moved iteratively to find a sparse representation. The initialization
and first two iterations are shown. Molecular graph edges and node labels are
omitted.

atoms may be used. The assumptions are reasonable for SAR

and other applications that lend themselves to such hierarchical

structures.

The problem of finding coefficients a such that Φa equals

or well-approximates g with few non-zero am may be refor-

mulated as a search for a node or a few nodes in the molecular

graph. In addition to finding nodes, i.e. atoms φm that con-

tribute to the expansion, the corresponding coefficient values

am must also be determined. Numerous search algorithms

exist to find nodes in a graph. Blind search algorithms incor-

porate no prior information to guide the search. In contrast,

heuristic search algorithms have some notion of proximity

to the goal available during the search process, allowing the

search to proceed along paths that are likely to lead to the

goal and reduce average-case running time.

Hill-climbing search is an algorithm similar to depth-first

search that makes use of a heuristic. In depth-first search,

one path is followed from root to leaf in a predetermined

way, such as: “always proceed to the left-most unvisited

child.” In contrast, hill-climbing search will “proceed to the

most promising unvisited child based on a heuristic.” In both

algorithms, if the goal is not found on the way down and

the bottom is reached, there is back-tracking. The approach

presented here has hill-climbing search as its foundation.

In standard graph search problems, nodes are labeled and

the goal of the search is fixed and specified with a label,

e.g. “find node K.” Thus the stopping criterion for the search

is simply whether the label of the current node matches the

goal of the search. Also, there is often a notion of intrinsic

distance between nodes that leads to simple search heuristics.

When the sparse signal representation problem is reformu-

lated as a search on an N -level molecular graph, stopping

criteria and heuristics are not obvious. One clear desideratum

is that calculation of both should require less memory and

computation than solving the full problem. The guiding graph,

chosen to be a G-level molecular graph, G � N , with its

root at the current node of the search, guides the search by

providing search heuristics and stopping conditions.

Intuition about the problem suggests that if the atom or

atoms that would contribute in an optimally sparse solution are

not included in the guiding graph when solving for coefficients
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in a sparsity enforcing manner, then the resulting solution will

have a non-zero coefficient for the atom most ‘similar’ to

the signal g. In terms of the N -level molecular graph, this

suggests that if the optimal sparse representation is far down

in the molecular graph, but the problem is solved with a small

dictionary containing atoms from a guiding graph near the top

of the molecular graph, then coefficients in the first G−1 levels

will be zero and one or more coefficients in level G non-zero.

In the same vein, if the guiding graph is rooted below the

optimal representation, then the root coefficient may be non-

zero and the coefficients in levels two through G will be zero.

If the guiding graph is such that it contains the optimal atoms,

then the corresponding coefficients will be non-zero and the

rest of the coefficients zero. This intuition is demonstrated

empirically; details are in the appendix.

A simple heuristic for the search based on the coefficient

values of the G nodes in level G is apparent from the

intuition and experimental validation. Due to the structure

of the molecular graph, each node has two children, so the

heuristic is used to determine whether to proceed to the left

child or the right child. We find the center of mass of the

bottom level coefficient magnitudes—the search is guided

towards the side that contains the center of mass. A stopping

criterion is also apparent: stopping when all of the nodes in

level G are zero during the search.

Hill-climbing search finds a single node—a single atom.

However, the algorithm that we propose is able to find a small

subset of atoms due to the guiding graph. When the stopping

criterion is met, i.e. when the finest-scale coefficients are all

zero in the sparse solution of the representation problem with

atoms from the current guiding graph, then that sparse solution

is taken as the solution to the full problem. Consequently, the

guiding graph allows a subset of atoms rather than a single

atom to be used in the representation.

In summary, the algorithm based on the molecular graph

and hill-climbing search is as follows.
(1) Initialization: Let i ← 1 and Φ(i) ← atoms

from the top G levels of the molecular graph.

(2) Find a sparse a(i)
such that Φ(i)a(i)

approximates g.

(3) Calculate weighted sum of bottom row

coefficient magnitudes: µ←
∑G

m=1 m|a
(i)
1

2
G2
−

1

2
G+m
|.

(4) If µ = 0 then stop. Otherwise, i← i + 1. If

bottom row nodes are leaves of the molecular

graph or both children of the guiding graph

have been visited before, then Φ(i) ← atoms

from the highest unvisited guiding graph.

Else, Φ(i) ← (µ < G+1
2

∑G

m=1 |a
(i)
1

2
G2
−

1

2
G+m
| and left

child unvisited ? atoms from the left child

guiding graph : atoms from the right child

guiding graph). Iterate to step (2).

The graph-structured algorithm that we propose is able

to produce representations in which there are contributions

from atoms that lie within the span of a guiding graph. The

approximate nature of the approach is controlled by G; by

increasing the size of the guiding graph we may, at the expense

of increased complexity, draw from a larger subset of atoms

in the solution. The smaller problem with Φ(i)a(i) is more

tractable than the large problem with Φa.

−0.5
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0.5
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0

0.5
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(a) (b) (c)

Fig. 4. Comparison of graph-structured algorithm and matching pursuit: (a)
the signal g; (b) atoms scaled by coefficients in solution obtained with graph-
structured algorithm; (c) atoms scaled by coefficients in solution obtained with
matching pursuit.

While any of a number of formulations and techniques may

be used to solve the smaller problem, here we use a non-

convex, `p, p < 1, relaxation, minimizing the cost function:

J
(

a(i)
)

=
∥

∥

∥
g − Φ(i)a(i)

∥

∥

∥

2

2
+ α

∥

∥

∥
a(i)

∥

∥

∥

p

p
, p < 1, (1)

by a quasi-Newton technique detailed in [19] to obtain a sparse

vector of coefficients a(i). Each step of the quasi-Newton

minimization involves solving a set of MG linear equations,

where MG is the number of atoms in the guiding graph.

Direct solution requires O(M3
G) computations. However, the

particular matrix involved is Hermitian, positive semidefinite,

and usually sparse, so the equations may be solved efficiently

via iterative algorithms. We use the conjugate gradient method

and terminate it when the residual becomes smaller than a

threshold.

The parameter α trades data fidelity, the first term, and spar-

sity, the second term. The choice of α is important practically

and is an open area of research. With α too small, the solution

coefficient vector a(i) is not sparse and the heuristic is not

meaningful; the guiding graph strays away from good search

paths. With α too large, the algorithm incorrectly terminates

early with all zero coefficients in the solution. In this work,

we choose the parameter subjectively and can usually set

it once for a given problem size. We keep α constant for

all iterations of the graph-structured algorithm. Generally,

solutions in step (2) of the algorithm are not very sensitive

to small perturbations of α. It is possible, however, for a

small change in α to cause the number of non-zero elements

in the solution to change, but such a change in solution is

not necessarily accompanied by a change in the heuristic and

stopping criterion. In all examples in this paper, the p of the

`p relaxation is 0.1; for the highly redundant dictionary that

is employed, a small value of p results in suitable sparsity.

The search-based procedure we have presented is greedy,

but not in the same way as matching pursuit and related

algorithms [6], [14]–[16]. A commitment is not made to

include an atom in the representation until the final iteration

when the stopping criterion is met, and also, atoms within a

guiding graph are considered jointly. As the guiding graph

slides downwards, any subset of fine-scale atoms can start

contributing to the representation. This behavior discourages

the assignment of a coarse-scale atom to represent what would

be better represented using a few close fine-scale atoms.

In some later iteration, a matching pursuit-like algorithm
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Fig. 5. Ground plane geometry in spotlight-mode SAR.

includes a fine-scale atom with a negative coefficient to cancel

extra energy from the coarse-scale atom included earlier. An

example of this behavior is given in Fig. 4. For a particular

signal g and an overcomplete dictionary of boxcar-shaped

atoms, solutions are obtained using both the graph-structured

algorithm presented in this section and the basic matching

pursuit algorithm [6], and compared. Both the graph-structured

algorithm and matching pursuit produce solutions that sum to

approximate g, but the decomposition of the graph-structured

algorithm is more atomic.

The algorithm for dictionaries without molecular decom-

position is straightforward; its operation in dictionaries with

L > 1 molecules, which we discuss in Section III, is more

interesting. Before reaching that point however, we illustrate

the application of this method to anisotropy characterization

in SAR.

C. Application to Wide-Angle SAR

Spotlight-mode SAR has an interpretation as a tomographic

observation process [20]. As mentioned in Section I, SAR uses

a radar mounted on an aircraft to collect measurements. From

one point along the aircraft’s flight path, the radar transmits a

modulated signal in a certain direction, illuminating a portion

of the ground known as the ground patch, and receives back

scattered energy, which depends on the characteristics of the

ground patch. Radar signals are similarly transmitted and re-

ceived at many points along the flight path. The radar antenna

continually changes its look direction to always illuminate

the same ground patch. The geometry of data collection in

spotlight-mode SAR is illustrated in Fig. 5. Coordinates on

the ground plane x, range, and y, cross-range, are centered in

the ground patch. Measurements are taken at equally spaced

aspect angles θ as the aircraft traverses the flight path. The

ground patch, with radius R, is shaded.

The scattering from the ground patch under observation

is manifested as an amplitude scaling and phase shift that

can be expressed as a complex number at each point. Thus,

scattering from the entire ground patch can be character-

ized by a complex-valued function of two spatial variables

s(x, y), which is referred to as the scattering function. Due

to the design of the radar signal and the physics of the

observation process, the collection of received signals is not

s(x, y) directly. Procedures for obtaining s(x, y) from the

measurements are known as image formation. In wide-angle

SAR, measurements come from vastly different viewpoints

and consequently, scattering behavior shows dependence on

θ, referred to as anisotropy, as well as on (x, y) [21]. For

example, a mirror-like flat metal sheet reflects strongly when

viewed straight on, but barely reflects from an oblique angle.

The relationship between the measurements g, obtained over

a finite bandwidth of frequencies and over a range of aspect

angles, and the anisotropic scattering function s(x, y, θ) is

given by:

g(f, θ) =

∫∫

x2+y2≤R2

s (x, y, θ) e−j 4πf
c

(x cos θ+y sin θ)dx dy, (2)

where c is the speed at which electromagnetic radiation propa-

gates. The set of aspect angles θ is inherently discrete, because

pulses are transmitted from a discrete set of points along the

flight path. The measurements are sampled in frequency f

to allow digital processing. The collection of measurements

g(f, θ) is known as the phase history.

The scattering response of objects such as vehicles on

the ground is well-approximated by the superposition of

responses from point scattering centers when using frequencies

and aperture lengths commonly employed in SAR [22]. The

anisotropic scattering from a single point-scatterer takes the

form s(x, y, θ) = s0(θ)·δ(x−x0, y−y0) and the measurement

model is:

g(f, θ) = s0(θ)e
−j

4πf
c

(x0 cos θ+y0 sin θ). (3)

The phenomenon of anisotropy often manifests as large

magnitude scattering in a contiguous interval of θ and small,

close to zero magnitude scattering elsewhere. Consequently,

the dictionary described in Section II-A containing all widths

and all shifts of contiguous intervals is well-suited for obtain-

ing parsimonious representations of anisotropic scattering. An

overcomplete expansion is as follows:

g(f, θ) =

M
∑

m=1

ambm(θ)e−j
4πf

c
(x0 cos θ+y0 sin θ). (4)

Atoms are φm(θ) = bm(θ)e−j 4πf
c

(x0 cos θ+y0 sin θ), where

bm(θ) are dilations and translations of a common pulse

shape. We can use boxcar pulses, Hamming pulses, or other

shapes that we expect to encounter. Anisotropy of narrow

angular extent comes from physical objects distributed in

space and anisotropy of wide angular extent comes from

physical objects localized in space; hence the atoms provide

a directly meaningful physical interpretation. Appropriately

stacking the measurements at different frequencies, we have

the sparse signal representation problem with a non-molecular

hierarchical dictionary and can obtain solutions using the

graph-structured algorithm described above.

D. Anisotropy Characterization of Single Point-Scatterer

We now show anisotropy characterization on SAR phase

history measurements from XPatch, a state-of-the-art elec-

tromagnetic prediction package, using the graph-structured

heuristic method described in this section. A scene containing
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Fig. 6. Single point-scatterer example: (a) aspect-dependent scattering
magnitude measurement (gray line) and solution (black line); (b) search path
of graph-structured algorithm.

a single scatterer is measured at N = 140 aspect angles spaced

one degree apart. The scattering magnitude as a function of

aspect angle is the gray line plotted in Fig. 6a. (The line shows

the measurements at one particular frequency within the fre-

quency band covered by the radar pulse; frequency dependence

is minimal and scattering magnitude at all frequencies is nearly

the same.)

Using boxcar pulses for atoms in the overcomplete dictio-

nary and a guiding graph of size G = 32, we obtain a sparse

approximation for the aspect-dependent scattering given by the

black line in Fig. 6a. The search path of the graph-structured

algorithm is shown in Fig. 6b. The line indicates the location

of the root node of the guiding graph within the full molecular

graph. When the stopping criterion is met, the atom at the root

of the guiding graph is of width 34 samples. The finest atoms

that contribute to the approximation have width 4 samples. The

sparse solution has 14 non-zero coefficients out of a possible

M = 9870 coefficients for N = 140.

From the solution, it is possible to infer physical properties

about the object being imaged because thin anisotropy corre-

sponds to objects of large physical size and wide anisotropy

to objects of small physical size. Sparsity and the particular

overcomplete dictionary are important because they allow this

characterization directly by identifying the coarsest non-zero

coefficient.

III. ALGORITHM FOR MOLECULAR DICTIONARIES

In the previous section, we described a search-based algo-

rithm for dictionaries whose atoms have a hierarchy, but did

not consider dictionaries that have a molecular decomposition

into subdictionaries. In this section, the heuristic algorithm is

extended by applying it to dictionaries with L > 1 molecules,

each individually having a hierarchical structure of atoms. We

have L coexisting molecular graphs and thus not just one

search, but L simultaneous searches. As we shall see, these

searches are not performed independently, but rather interact

and influence each other. For joint anisotropy characterization

and image formation, the L molecules correspond to L dif-

ferent point-scatterers or spatial locations in the ground patch

being imaged.

A. Molecular Dictionaries

Overcomplete dictionaries composed of molecules are fairly

common, arising in one of two ways. The first is as the union

of two or more orthogonal bases and the second, through

dependence on some parameter that takes the same value for

one subset of atoms, another value for a subset disjoint from

the first, and so on.

An example of the first instance is a dictionary made up

of the union of an orthogonal basis of lapped cosines and an

orthogonal basis of discrete wavelets that provides atoms to

represent tonal and transient components in audio signals [11];

the same idea is used for images as well, taking two different

bases together as an overcomplete dictionary, one for periodic

textures and one for edges [23]. An example in audio of the

second instance is molecules whose atoms share a common

fundamental frequency [12]. In the radar imaging example in

Section III-D, atoms within molecules share a common (x, y)
location and different molecules correspond to different spatial

locations.

The two types of decompositions into molecules present

different properties. In the first type, different molecules aim

to represent very different phenomena and are incoherent from

each other, whereas in the second, the molecules correspond

to different instances of the same phenomenon and may

be highly coherent. In this work, we consider dictionaries

whose molecules all have hierarchical structure that permits

the construction of molecular graphs, regardless of decom-

position type. We use simultaneous searches on all molecular

graphs; the difficulty of the problem increases as the coherence

between molecules increases.

B. Interacting Searches on Multiple Graphs

The general framework for the graph-structured algorithm

with dictionaries containing more than one molecule is

the same as for dictionaries without molecules, but with

a few key differences. Here the dictionary is of the form
[

Φ1 Φ2 · · · ΦL

]

with each molecule Φl having a molec-

ular graph. We assume that all atoms in the dictionary are

distinct and that molecules do not share atoms. L guiding

graphs iterate through the L molecular graphs, one guiding

graph per molecular graph. The vector of coefficients a also

partitions as
[

aT
1 aT

2 · · · aT
L

]T
. L searches are performed

simultaneously, as follows.
(1) Initialization: Let i ← 1 and for

all molecules l = 1, . . . , L, Φ
(i)
l ← atoms

from the top G levels of molecular graph l.

Φ(i) ←
[

Φ
(i)
1 · · · Φ

(i)
L

]

.

(2) Find a sparse a(i)
such that Φ(i)a(i)

approximates g.

(3) For all l = 1, . . . , L, calculate weighted

sum of bottom row coefficient magnitudes:

µl ←
∑G

m=1 m|a
(i)

l, 1

2
G2
−

1

2
G+m
|.

(4) If
∑L

l=1 µl = 0 then stop. Otherwise,

i ← i + 1. For all l = 1, . . . , L, if µl = 0, then

Φ
(i)
l ← Φ

(i−1)
l . Else if bottom row nodes are

leaves of molecular graph l or both children of

guiding graph l have been visited before, then

Φ
(i)
l ← atoms from the highest unvisited guiding

graph. Else, Φ
(i)
l ← (µl < G+1

2

∑G

m=1 |a
(i)

l, 1

2
G2
−

1

2
G+m
|

and left child unvisited ? atoms from the left

child guiding graph : atoms from the right

child guiding graph). Iterate to step (2).
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Let us emphasize that although the L searches are performed

simultaneously, they are not performed independently. The

searches are coupled because the inverse problem is solved

jointly for all molecules on every iteration; contributions to

the reconstruction of g from all of the molecules interact.

There is no notion of molecules when solving the smaller

inverse problem g ≈ Φ(i)a(i). The molecular structure only

comes into play after a(i) has been solved, and the heuristics,

stopping criteria, and Φ
(i)
l updates are to be calculated. Since

we consider all molecules jointly rather than one at a time

as matching pursuit-like algorithms would do, we see similar

advantages of the formulation presented here to those seen in

Fig. 4 for the single molecule case.

The dictionary used in calculating the heuristic and stopping

criterion has O(G2) atoms per molecule and O(G2L) atoms

for L molecules, instead of O(N2L) atoms used if one were to

solve the full inverse problem. However, the graph-structured

algorithm requires O(N2) iterations, whereas solving the full

inverse problem at once requires just one iteration. G is a small

constant that is fairly independent of N . For joint anisotropy

characterization and image formation, L and N may be in the

thousands. The realistic example given in Section III-E would

have eighty-nine million atoms if the full problem were solved

at once, but the graph-structured approach allows us to only

consider a small fraction of them. In the following section,

we discuss variations to the algorithm presented thus far that

further reduce computation or memory requirements.

C. Algorithmic Variations

The graph-structured algorithm described thus far uses the

full hill-climbing search including back-tracking, taking steps

of single levels per iteration based on a heuristic employing

guiding graphs taking the form of G-level molecular graphs.

A number of variations to the basic algorithm may be made;

we present a few here, but many others are also possible.

Algorithms that use one variation or use a few variations

together can be used to solve the sparse signal representation

problem. Depending on the size of the problem and the

requirements of the application, one algorithm can be selected

from this suite of possible algorithms.

1) Hill-climbing without back-tracking: Hill-climbing

search always finds the goal node because of back-tracking.

In a first variation, we limit the search to disallow back-

tracking. This reduces the iterations from O(N2) to O(N),
but results in a greedier method. If, on a particular example,

hill-climbing with back-tracking were to terminate on the

first pass down molecular graphs before reaching leaves, then

the same operation would be achieved whether the original

algorithm or the variation were used. In practice, we often

observe termination on the first downward search, including

in the example seen in Section II-D and an example presented

below in Section III-D.

2) Modified molecular graph: Molecular graphs are struc-

tured such that in hill-climbing without back-tracking, one

wrong step eliminates many nearby nodes and paths because

each node has only two children. The graph may be modified

to increase the number of children per node to four for

interior nodes and three for nodes on the edges of the graph,

consequently not disallowing as many nodes and paths per

search step.

A modified heuristic to go along with this modified graph

is to use the G coefficients in level G of the guiding graph

as before, but instead of determining whether the center of

mass of the coefficient magnitudes is in the left half or the

right half, determining which quarter it is in. If the left-most

quadrant, then the search proceeds to the node in the next

level that is two to the left of the current node. If the middle

left quadrant, then the next node is one to the left in the

next level, and so on. With these additional edges, search

without back-tracking is less greedy with no additional cost,

since calculating this modified heuristic is no more costly than

calculating the original heuristic.

3) Modified guiding graph and larger steps: The guiding

graph need not be a G-level molecular graph; for example,

the graph may be thinned and include the top node, nodes in

level G, and nodes in a few intermediate levels rather than all

intermediate levels, further reducing the number of atoms in

Φ(i). These atoms are sufficient for calculating the heuristic

and stopping condition. Also, searches may take larger steps

than moving guiding graphs down just one level per iteration.

4) Removal of stopped molecules: The graph-structured

algorithm reduces the number of atoms per molecule from

O(N2) to O(G2), but does nothing to reduce the number of

molecules L. A further variation to the hill-climbing search

without back-tracking may be introduced that reduces the

average-case dependence of the number of atoms on L. It is

observed that, despite interactions among contributions from

different molecules, once the search on a particular molecule

stops it does not restart in general, but may occasionally restart

after a few iterations. It is thus natural to consider fixing the

contribution from a molecule upon finding its coefficients.

In the algorithm, this implies that once the stopping criterion

is met at molecule l, the signal g is updated to be g′ =
g − Φlal, and Φl is removed from Φ, thereby reducing

the number of atoms in Φ. We perform the removal some

iterations after the stopping criterion is met and maintained

to allow for a possible restart. This variation, though distinct,

has some similarity to matching pursuit.

D. Joint Anisotropy Characterization and Image Formation

The problem of joint anisotropy characterization and image

formation in wide-angle SAR takes the problem of character-

izing anisotropy of a single point-scatterer seen in Section II

and extends it to doing so for all points in the ground patch.

In other words, whereas standard image formation attempts

to recover s(x, y) assuming no dependence on θ, we aim to

recover s(x, y, θ).
The observation model from more than one point is a

superposition of terms like (3):

g(f, θ) =

L
∑

l=1

sl(θ)e
−j

4πf
c

(xl cos θ+yl sin θ). (5)

The observation model (5) lends itself to an overcomplete
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expansion of the form:

g(f, θ) =

L
∑

l=1

M
∑

m=1

almbm(θ)e−j 4πf
c

(xl cos θ+yl sin θ), (6)

in a similar manner to the single point-scatterer case. Here

the dictionary is naturally decomposed into molecules, with

each molecule corresponding to a different spatial location

(xl, yl). We can thus use the methods described above for

joint anisotropy characterization and image formation [24].

When performing joint anisotropy characterization and im-

age formation, a grid of pixels in the image to be reconstructed

or points of interest identified through preprocessing may be

used as the spatial locations (xl, yl). We now present an

example with L = 25 spatial locations in a five by five

grid, with rows and columns spaced one meter apart. Unlike

Section II-D which uses XPatch data, the synthetic data in this

example is matched to the dictionary for illustrative purposes.

This example has N = 160 aspect angles equally spaced

over a 110◦ aperture. Fig. 7 shows the scattering magnitude at

each of the 25 spatial locations arranged as in an image; five

of the spatial locations contain boxcar-shaped scattering and

the other twenty do not have scatterers. The coherent sum of

the scatterers is the phase history measurement g(f, θ), plotted

in Fig. 8 for one frequency.

We recover a signal representation from the phase history

measurements using the basic algorithm for molecular dic-

tionaries with guiding graphs of size G = 8 and boxcar-

shaped atoms. The search paths for the different locations

Fig. 9. Search paths of basic algorithm for molecular dictionaries.

are shown in Fig. 9. The overcomplete dictionary for N =
160, L = 25 has 322, 000 atoms. In the solution of the

sparse signal representation problem, contributions come from

exactly the five atoms used to generate the synthetic data; the

coefficient values are also recovered. If the solution were to be

overlaid on Fig. 7 and Fig. 8, it would not be distinguishable.

Looking at the search paths, despite not containing scatterers,

a couple of molecules initially iterate nonetheless, but in the

end correctly give all zero coefficients. This effect is a result

of the interaction between different molecules. The algorithm

operates correctly on this synthetic example; a larger example

on XPatch data is given below and others may be found in

[24], [25].

E. Approaches to Wide-Angle SAR and a Realistic Example

To conclude this section, a large, realistic example with

XPatch data is presented. The scene being imaged contains

a backhoe-loader, illustrated in Fig. 10a [26]; measurements

are taken at N = 1541 equally-spaced angles over an aperture

ranging from −10◦ to 100◦. L = 75 spatial locations are iden-

tified from a composite subaperture image using the method

of [27], for which anisotropy is then jointly characterized.

The full dictionary for this example has M = 89, 108, 325
atoms. We apply the graph-structured algorithm with all of

the variations listed in Section III-C to the problem and obtain

seventy-five functions of aspect angle.

The magnitudes of two of these functions are plotted in

Fig. 10e and Fig. 10f. In order to provide spatial visualization

of the scattering behavior, the magnitude, center angle of

anisotropy, and angular extent of anisotropy for each of the

spatial locations is indicated by the shading of the markers in

Fig. 10b-d.

In the magnitude visualization, light gray is small magnitude

and black is high magnitude. Points corresponding to the

front bucket of the backhoe-loader have high magnitude. In

the visualization of center angle, the left side of the front

bucket has responses closer to −10◦ (light gray) and the
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Fig. 10. Backhoe-loader example: (a) illustration of the scene; L = 75 spatial
locations of interest shaded according to (b) maximum magnitude, (c) center
angle of anisotropy (degrees), and (d) angular extent of anisotropy (degrees) in
solution; (e)-(f) aspect-dependent scattering solution for two spatial locations.

right side of the front bucket has responses closer to +100◦

(black). In the angular extent visualization, it can be seen that

narrow and wide anisotropy is distributed, but the points on

the front bucket with high magnitude also have narrow extent.

Overall, one can note from the visualizations that the front

bucket flashes on its two sides and the other parts of the

backhoe-loader have scattering with smaller magnitude and

wider anisotropy.

Through joint anisotropy characterization and image for-

mation, we obtain much more information than a simple

image would provide, namely an entire dimension of aspect-

dependence. The reflectivities of scatterers with narrow an-

gular persistence, which are lost in Fourier-based image for-

mation, are obtained. The formulation presented here solves

for the anisotropy of all spatial locations within one system

of equations, taking interactions among scattering centers into

account.

The formulation is more flexible than parametric meth-

ods for anisotropy characterization such as [28], [29]. Also,

solutions have more detail in aspect angle than subaperture

methods such as [30]–[33], in which the measurements are

divided into smaller segments covering only parts of the wide-

angle aperture. Consequently, using the method presented here,

angular persistence information can be extracted as in Fig. 10d,

which is not possible from subaperture methods. Also, since

data from the full wide-angle aperture is used here throughout,

cross-range resolution is not reduced as it is with subaperture

methods.

IV. DICTIONARY REFINEMENT

In Section II and Section III, the dictionary Φ is known and

fixed, but this need not always be the case. A more ambitious

goal is to find the best dictionary under some criteria and an

optimally sparse representation jointly. The idea of learning

overcomplete dictionaries has been applied in the case that

one has many examples of signals g, much more than the

number of atoms in Φ, and a dictionary is to be determined

that is able to most sparsely represent all of the signals,

usually for compression tasks [34], [35]. In inverse problems,

where the interest is in extracting physical meaning from the

obtained sparse representation for each input signal g, rather

than compression of an entire signal class, it is of interest to

look at the best dictionary for each input rather than the best

dictionary to represent an entire set of training signals. At

this point, one could conclude that a dictionary with φ1 = g

is optimal and stop. However, we would like to consider

dictionaries derived from a parameterized observation model

and only consider parameterized atoms, not arbitrary atoms.

In this section we propose and demonstrate a formulation for

joint optimization to achieve a sparse coefficient vector and

optimal parameter settings for a dictionary with parameterized

atoms or molecules.

A. Joint Dictionary and Sparse Coefficient Optimization

We begin with a dictionary whose atoms depend on a

set of parameters η; each parameter may or may not be

shared by atoms or molecules. Furthermore, we consider

the `p relaxation to the sparse signal representation problem

mentioned in Section II-B [19]. The optimization problem at

hand then is to minimize the following cost function:

J(a, η) = ‖g − Φ(η)a‖2
2 + α‖a‖p

p, p < 1, (7)

jointly determining a dictionary Φ(η) and coefficients a.

To carry out the joint minimization, we take a coordinate

descent approach, alternately optimizing over the coefficients

and dictionary parameters. The two optimizations are:

a(t+1) = argmin
a

∥

∥

∥
g − Φ

(

η(t)
)

a

∥

∥

∥

2

2
+ α ‖a‖

p

p . (8)

η(t+1) = argmin
η

∥

∥

∥
g − Φ (η)a(t+1)

∥

∥

∥

2

2
+ α

∥

∥

∥
a(t+1)

∥

∥

∥

p

p

= argmin
η

∥

∥

∥
g − Φ (η)a(t+1)

∥

∥

∥

2

2
. (9)

The application will guide the particular initialization for η.

The non-convex minimization (8) may be performed using the

graph-structured algorithms of Section II and Section III, or

using quasi-Newton optimization [19].

The minimization (9) may be recognized as nonlinear least-

squares; many techniques exist in the literature including the

trust-region reflective Newton algorithm that we use [36].

Linear inequality constraints on the parameter vector η may be

handled within this framework. Termination of the procedure

is upon the change in η falling below a small constant.
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B. Characterization of Migratory Scattering Centers

We demonstrate joint dictionary parameter and sparse

representation optimization on the characterization of a

phenomenon in wide-angle SAR imaging different from

anisotropy. Certain scattering mechanisms migrate as a func-

tion of aspect angle θ in wide-angle imaging [37], [38].

Migration occurs when radar signals bounce back from the

closest surface of a physical object, but the closest surface

of the object is different from different viewing angles; the

physical object is not really moving, but appears to move in the

measurement domain. By accounting for this effect in solving

the inverse problem, a physically meaningful, parsimonious

description can be extracted.

For example, considering a circular cylinder, the point of

reflection on the surface closest to the radar can be parame-

terized as a function of θ around the center of the cylinder

(xc, yc) using the radius of the cylinder η. When θ = 0, the

scatterer appears to be at (xc − η, yc), which we define as

(x̄, ȳ). The observation model for migratory point scatterers

is:

g (f, θ) =

L
∑

l=1

sl(θ)e
−j

4πf
c

((x̄l+ηl) cos θ+ȳl sin θ−ηl). (10)

A dictionary expansion for the observation model is:

g (f, θ) =

L
∑

l=1

M
∑

m=1

almbm(θ)e−j
4πf

c
((x̄l+ηl) cos θ+ȳl sin θ−ηl).

(11)

In this instance, the atoms are parameterized by the radius η,

and moreover, all atoms in molecule l share a common radius

ηl; hence η is an L-vector of parameters. The inverse problem

is to jointly recover the anisotropy and radius of migration of

all scatterers in the ground patch.

The radius is constrained to be non-negative, i.e. η ≥ 0.

Most scatterers are not migratory, and thus we initialize η with

all zeroes. Often in practice, the coefficient vector a retains its

sparsity structure on every iteration because even for η = 0,

characterized anisotropy may be close to correct, or at least

have the correct support. The procedure may be envisioned as

simultaneously inflating L balloons.

As an example, we look at data from XPatch of a scene

containing a tophat that exhibits circular migratory scattering.

In the aperture with N = 15 aspect angles spaced one degree

apart, the tophat also has anisotropy, as shown in Fig. 11a.

The magnitudes as well as the real and imaginary parts of

the measurements are shown, as migratory scattering affects

phase, not magnitude. An image of the scene formed using

the polar format algorithm, a conventional method based on

the inverse Fourier transform, is shown in Fig. 11b.

After identifying the spatial location with largest magnitude

in the conventionally formed image, the coordinate descent

described in this section is applied with L = 1. A raised

triangle shape is used for the atoms. The solution has radius

5.314 meters and anisotropy as plotted in Fig. 11a. The circular

migration of radius 5.314 meters is overlaid on and matches

well with the conventional image in Fig. 11b. Coordinate de-

scent to jointly optimize over radius and anisotropy is effective
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Fig. 11. Tophat example: (a) aspect-dependent scattering measurement (gray
line) and solution (black line); (b) conventionally formed image with migration
solution overlaid.

with realistic data seen here, and with several scatterers in a

scene (L > 1), see [25]. By allowing for a non-zero radius,

image formation is not simply pixel-based but more region-

based. Although point scatterers can be equated to spatial

locations, if information about migration is considered, the

scatterer is more of an object-level construct.

We have looked at characterizing the migration of scatterers

when the migration is circular in shape. Circles are an impor-

tant subset of migratory scattering because many man-made

objects contain scatterers with circular migration. However,

any shape defined by a radius function η(θ) around a center

is easily expressed in the observation model:

g (f, θ) =

L
∑

l=1

sl(θ)e
−j

4πf
c

((x̄l+ηl(0)) cos θ+ȳl sin θ−ηl(θ)).

(12)

Under this model, ηl is not constant across all angles, so a

length L vector of parameters is not sufficient. One option is to

take a functional form for ηl(θ) with more degrees of freedom

than just a constant function, such as a polynomial, and

lengthen the parameter vector η. Another option is to locally,

i.e. in small segments of θ, approximate ηl(θ) with pieces of

circles [25]. The phenomenon of migratory scattering, which

has rarely been explored in the literature, is a source of

information that can be mined for details about object shape

and size.

V. SIMULTANEOUS SPARSITY IN MULTIPLE DOMAINS

In the previous sections, we use an overcomplete dictionary

Φ to represent a signal g, assuming that a sparse representation

exists and then finding it. Our assumption in those sections

is that g is sparse in the domain of the atoms. In this

section, reverting to a known and fixed dictionary, we look at

signals that are sparse in the domain of that known and fixed

dictionary, but are also sparse in one or more other domains.

The goal is to develop a formulation that recovers parsimo-

nious representations, semantically interpretable in the case of

inverse problems, making use of sparsity in all domains. Note

that in the end, solutions will still be representations in terms

of the atoms of the dictionary.
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Fig. 12. Glint example: (a) aspect-dependent scattering measurement; (b)
conventionally formed image.

A. Additional Sparsity Terms

For sparsity in the domain of the dictionary, the `p relaxation

as an objective function is:

J(a) = ‖g − Φa‖2
2 + α‖a‖p

p, p < 1. (13)

Let us assume that g is also sparse in a transformed domain

and that that sparsity is to be exploited as well. First note

that taking an orthonormal transformation of both the signal g

and dictionary Φ does not change the cost function. Also, the

dictionary Φ is fixed; consequently, we keep the data fidelity

term as is, and append additional sparsity terms.

J(a) = ‖g − Φa‖2
2 +

∑

i

αi‖Fi(a)‖p
p. (14)

The functions Fi(a) return vectors related to the domain

in which sparsity is to be favored. For the domain of the

dictionary atoms, Fi is an identity operation. For domains that

are transformations of the original domain, Fi is constructed

as follows.

The operation Fi is the composition of three simpler opera-

tions. First, since the coefficients themselves have no particular

meaning until paired with their corresponding atoms, initially

Fi takes the coefficients through the atoms φm. Thereafter, the

second operation is transformation to another domain. Finally,

further operations in the transformed domain may follow. If

all Fi(a) are linear, i.e. matrix-vector products, then the cost

function may be optimized using quasi-Newton optimization

[19] or the graph-structured algorithm using quasi-Newton

optimization in each iteration. A concrete application given

below constructs such Fi.

B. Parsimonious Representation Recovery of Glint Anisotropy

Scattering behavior known as glint is produced by long,

flat metal plates and is not migratory, has very narrow

anisotropy, and corresponds to a line segment in the x-y

domain oriented at the same angle as the center angle of

the anisotropy. Fig. 12a shows aspect-dependent scattering

of glint anisotropy from XPatch data and Fig. 12b shows a

conventionally formed image. A parsimonious representation

ought to explain scattering with a single scattering center, not

with a collection of scatterers located on the line segment. We

apply the formulation (14) both to favor sparsity among atoms

and to favor sparsity along lines [38].

To favor sparsity among atoms, F1 is the identity. We now

find a domain in which sparsity along a line can be favored.

The normal parameter space of the Hough transform, the ρ-

θ plane, and image space, the x-y plane, are related by the

property that a set of points lying on the same line in image

space corresponds to a set of sinusoids that intersect at a

common point in parameter space [39]. Thus sparsity among

scatterers in individual ρ-θ cells achieves the goal of sparsity

among points on a line.
In [40], a Hough space sparsifying regularization approach

is employed to enhance and detect straight lines in positive

real-valued images by imposing sparsity when taking the

image data to the ρ-θ plane. Parameter space cells with

small counts are suppressed and cells with large counts are

enhanced; thus, non-line features are suppressed and line

features are enhanced in image space. The goals in our work

are different and consequently, the sparsity terms are of a

different flavor as well.
The range profile domain in SAR, a one-dimensional inverse

Fourier transform of the phase history measurement domain,

is equivalent to the parameter space of the Hough transform.

It follows that for sparsity among scatterers in cell (ρk, θn),
a sparsity term of the form ‖|Lkna|‖p

p is used, where Lkn

is a linear operator that is a composition of a block-diagonal

version of the dictionary to bring the coefficients to the phase

history domain, a discrete Fourier transform operator to go to

the range profile domain, and a selection operator to select cell

(ρk, θn). The resulting vector Lkna is of length L. Favoring

sparsity in all range profile cells, the overall sparsity cost

function is:

J(a) = ‖g−Φa‖2
2 + α1 ‖a‖

p

p + α2

K
∑

k=1

N
∑

n=1

‖|Lkna|‖p
p. (15)

The parameters α1 and α2 control the influence of the two

sparsity terms. When α2 = 0, the cost function reduces to

(13).
We solve the inverse problem with L = 24 pixels of interest

identified by having large magnitude in the conventional image

Fig. 12b. These 24 pixels are along a diagonal line more or

less. The measurements are at N = 20 aspect angles over a

19◦ aperture with the glint at 5.5◦.
Let us define two counts related to the sparsity of the

solution and look at their behavior as α1 and α2 are varied.

We define LA as the number of molecules out of the possible

L = 24 that have at least one non-zero coefficient in the

solution. Also, MA is defined as the average number of non-

zero coefficients per molecule in those molecules that have at

least one non-zero coefficient. The maximum possible value

of MA is M , which is 210 for N = 20. When LA is zero,

MA is defined to be zero. Solutions are obtained using the

quasi-Newton method to minimize (15).
The two counts LA and MA are given in Table I for different

values of α1 and α2. First, it should be noted that when α1 and

α2 get too large, all of the coefficients go to zero. The main

thing to take note of is that when α2 = 0, LA = 24, i.e. all

spatial locations provide contributions to the solution, but as

α2 increases, sparsity along a line is a greater influence and

the number of contributing spatial locations decreases to one.
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TABLE I

LA AND MA AS A FUNCTION OF THE PARAMETERS α1 AND α2 .

(LA, MA) α1 = 0 α1 = 10 α1 = 20 α1 = 30 α1 = 40

α2 = 0 (24, 39) (24, 1) (24, 1) (24, 1) (0, 0)
α2 = 5 (2, 39) (3, 1) (3, 1) (3, 1) (0, 0)
α2 = 10 (1, 39) (2, 1) (4, 1) (2, 1) (0, 0)
α2 = 15 (1, 39) (4, 1) (3, 1) (1, 1)∗ (0, 0)
α2 = 20 (1, 39) (4, 1) (3, 1) (1, 1)∗ (0, 0)
α2 = 25 (1, 39) (4, 1) (2, 1) (0, 0) (0, 0)
α2 = 30 (1, 39) (2, 1) (1, 1)∗ (0, 0) (0, 0)
α2 = 35 (1, 39) (1, 1)∗ (1, 1)∗ (0, 0) (0, 0)
α2 = 40 (1, 39) (1, 1)∗ (1, 1)∗ (0, 0) (0, 0)

Sparsity among atoms is not enough for the solution on XPatch

data to be parsimonious in the number of spatial locations,

sparsity along a line is also required.

It can be seen that when α1 = 0, 39 atoms per spatial

location contribute, not very sparse. For larger α1, just one

atom per spatial location contributes. Considering the behavior

of LA and MA together, we note that the two sparsity terms

are fairly orthogonal; the main effect of sparsity among atoms

is on the number of atoms per spatial location and the main

effect of sparsity along a line is on the number of spatial

locations, as per the design objective.

A sparse and physically interpretable approximation ought

to assign all of the scattering to the leaf atom at 5.5◦ of a single

spatial location. Such a solution with one non-zero coefficient

is recovered for the (α1, α2) pairs marked with an asterisk in

Table I.

Through the example it has been seen that both types of

sparsity are necessary to recover a solution that represents the

scattering as coming from a single point and with very thin

anisotropy explained by a single atom. With this representa-

tion, spatial properties about the object being imaged, such

as orientation and physical extent, may be inferred. Although

the same object-level inferences could have been made with

α2 = 0, in that case, L such objects would be indicated

rather than one, which does not make physical sense. Points

have more meaning than just pixels with aspect-dependent

amplitudes.

VI. CONCLUSION

We looked at methods of obtaining sparse signal repre-

sentations and approximations from overcomplete dictionaries

with hierarchical structures within subdictionaries, focusing

on the context of coherent inverse problems with physically

interpretable dictionary elements. We developed a heuristic

method of solution for such problems that takes advantage

of the structure by relating the problem to search on graphs.

We also took a step back from the classic sparse signal

representation problem to consider dictionary refinement as

well as obtaining solutions simultaneously sparse in multiple

domains. Under dictionary refinement, a coordinate descent

approach was developed to jointly optimize parameterized

atoms and coefficients, whereas under simultaneous sparsity,

an extended sparsifying cost function was minimized.

The methods were demonstrated on various facets of wide-

angle SAR, but are general enough to transfer to other
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Fig. 13. Coefficient magnitudes in 8-level guiding graph as signal g is varied
from coarse to fine.

applications with appropriate dictionaries. In the SAR con-

text, starting from the same low-level measurements used by

conventional image formation techniques, we have taken a

step farther in scene understanding while also taking into

account phenomena such as anisotropy that cause inaccuracies

in conventional methods. We have started to move away from

a pixel representation to more of an object-level representation

through the use of a physically meaningful dictionary.

APPENDIX

Two experimental results are given as empirical validation

for the search heuristic and stopping criterion described in

Section II-B. We show that solutions from subdictionaries do

in fact have non-zero coefficients for atoms most ‘similar’

to the signal g, particularly when g is not contained in the

subdictionary. For the experiments, the molecular graph has

N = 400 levels and the guiding graph has G = 8 levels.

Keeping the guiding graph fixed within the molecular graph,

the behavior of the solution a is observed as the signal g is

varied. Quasi-Newton optimization is used to obtain the sparse

solution coefficients a.

In the first experiment, with results in Fig. 13, the guiding

graph is fixed with root at the left-most node of level 200 in the

molecular graph. The true signal g is varied from coarse to fine

support. In terms of the molecular graph, the true coefficient

is varied, starting at the root node, through all nodes along the

left edge of the graph, to the left-most node of level 400. In the

plot, the row in the molecular graph which contains g is plotted

on the horizontal axis. The magnitudes of the 36 coefficients

in a are indicated by shading (white is zero); each horizontal

strip is for one of the coefficients. Most coefficients are zero

for all g due to sparsity. In the regime where the guiding graph

is below the true coefficient, the coefficient of the guiding

graph root node is non-zero. In the regime where the guiding

graph covers the true coefficient, the correct coefficient is non-

zero. When the guiding graph is above the true coefficient, the

coefficient of the bottom left node, the node in the last level

closest to the truth, is non-zero and others are zero. It should

be noted that the influence of the finest signals does not reach

up to make any guiding graph node coefficients non-zero (a

consequence of regularization).

In the experiment yielding the results of Fig. 14, the guiding

graph is fixed with root at the center node of level 200 instead

of the left-most node. The true node is varied from left to right

across the molecular graph at level 210, three levels below
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Fig. 14. Coefficient magnitudes in 8-level guiding graph as signal g is shifted
from left to right.

the bottom of the guiding graph. This figure is organized in

the same manner as Fig. 13, but the horizontal axis indicates

the column of g in the molecular graph. From these results,

first it is apparent that only coefficients in the last level of

the guiding graph are non-zero, reconfirming results from the

previous experiment. Second, it can be seen that when the

truth is to the left of the guiding graph, the left-most node of

level G is non-zero. Similarly, when the truth is to the right,

the right node is non-zero; when the truth is underneath the

8-level graph, nodes in the interior of the last level are non-

zero.
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ABSTRACT 

We consider the problem of automatic parameter selection in regularization-based radar image formation techniques. It 
has previously been shown that non-quadratic regularization produces feature-enhanced radar images; can yield 
superresolution; is robust to uncertain or limited data; and can generate enhanced images in non-conventional data 
collection scenarios such as sparse aperture imaging. However, this regularized imaging framework involves some 
hyper-parameters, whose choice is crucial because that directly affects the characteristics of the reconstruction. Hence 
there is interest in developing methods for automatic parameter choice. We investigate Stein’s unbiased risk estimator 
(SURE) and generalized cross-validation (GCV) for automatic selection of hyper-parameters in regularized radar 
imaging. We present experimental results based  on the Air Force Research Laboratory (AFRL) “Backhoe Data Dome,” 
to demonstrate and discuss the effectiveness of these methods.   

Keywords: synthetic aperture radar, hyper-parameter selection, sparse-aperture imaging, feature-enchanced imaging, 
inverse problems 

 

1. INTRODUCTION 
Conventional image formation techniques for synthetic aperture radar (SAR) suffer from low resolution, speckle and 
sidelobe artifacts. These effects pose challenges for SAR images when used in automatic target detection and recognition 
tasks. Recently, new SAR image formation algorithms have been proposed to produce high quality images which 
provide increased resolution and reduced artifacts [1,2,3]. We consider the non-quadratic regularization-based approach 
of [1] which aims at providing feature-enhanced SAR images. The idea behind this approach is to emphasize appropriate 
features by means of regularizing the solution. In fact, regularization methods are well known and widely used for real-
valued image restoration and reconstruction problems. However SAR imaging involves some difficulties in application 
of these methods. As an example, SAR involves complex-valued reflectivities. Considering and addressing such 
difficulties, extensions of real-valued non-quadratic regularization methods have been developed for SAR imaging. 

Regularization methods, in general, try to balance the fidelity to data and prior knowledge to obtain a stable solution. 
This stability is ensured through a scalar parameter which is called regularization parameter or hyper-parameter. 
Selection of this parameter is another problem in a regularization framework. There exist several approaches which have 
been mostly practised in quadratic regularization methods such as Tikhonov regularization. Recently, non-quadratic 
methods have acquired greater importance thanks to their property of preserving useful features such as edges. Hence 
there is interest in developing methods for automatic parameter choice in the non-quadratic setting. 
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We consider Stein’s unbiased risk estimator (SURE) and generalized cross-validation (GCV) for parameter selection in 
non-quadratic regularization-based radar imaging. They have been both used in problems with quadratic constraints [4,5] 
but the experiments for non-quadratic methods are limited [6]. We propose their use in the regularization-based SAR 
image formation framework. We present the effectiveness of SURE and GCV through our experiments based  on the Air 
Force Research Laboratory (AFRL) “Backhoe Data Dome” [7]. 

2.  REGULARIZATION-BASED SAR IMAGING 
For feature-enhanced image formation we consider an approach based on non-quadratic regularization [1]. The 
framework of [1] relies on the SAR observation process expressed in the following form: 

     y Hf w= +   (1) 

where H  represents a complex-valued discrete SAR operator, w  stands for additive noise, y  and f  are data and the 
reflectivity field, respectively. Here we prefer to use the conventional image as the input data, hence the technique works 
as a deconvolution method. In this framework, SAR image reconstruction problem is formulated as the following 
optimization problem 

 ( )ˆ arg min
f

f J f= .  (2) 

One choice for ( )J f , which we consider here, has the following form: 

 ( ) 2

2

p

p
J f y Hf fλ= − +   (3) 

where . p

p
 denotes the pl -norm and λ  is a scalar parameter. The first term in the objective function (3) is a data 

fidelity term, which incorporates the SAR observation model (1), and thus information about the observation geometry. 
The second term in (3) incorporates prior information reflecting the nature of the field f , and is aimed at enhancing 
point-based features. Additional terms like a smoothness penalty on  f  can be employed in this framework to 
emphasize other characteristics of the field. However, in fact, many object recognition methods rely on locations of 
dominant point scatterers extracted from SAR images. Therefore we choose the cost function ( )J f  to be as in (3) 
throughout this work, and thus produce images in which point-based features are enhanced. It has been known that 
minimum pl -norm reconstruction with 1p ≤  provides localized energy concentrations in the resultant image. In such 
images, most elements are forced to be small, on the other hand, a few are allowed to have very large values. With 
respect to 2l -norm reconstruction this approach favors a field with smaller number of dominant scatterers. This type of 
constraint aims to suppress artifacts and increase the resolvability of scatterers.  

To avoid the problems due to nondifferentiability of the objective function around the origin, a smooth approximation to 
the pl -norm is used, and the objective function takes the following form 

  ( ) ( )
2

2 2

2
1

pn

i
i

J f y Hf fλ β
=

= − + +∑   (4) 

where if  denotes the ith element of f , n  is the number of pixels in f , and β  is a small scalar. The estimate f̂  is the 
solution of the following equation: 

 ( )( ) 1ˆ ˆT Tf H H W f H yβλ
−

= +   (5) 
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where ( )ˆW fβ  is a diagonal weight matrix whose ith diagonal element is ( )( )2 22 p

ip f β
−

+ . The weight matrix acts 

in the following manner: if there is a scattering object in the field of interest then if ’s will be large, and thus 

corresponding elements of  ( )ˆW fβ  will be small and allowing large intensities. Otherwise, elements of  ( )ˆW fβ  will 

be large and suppress the energy concentrations at that location.  

The expression in (5) is still nonlinear and no closed form solution exists. An iterative procedure can handle the 
nonlinearity and results in the formulation: 

 ( )( ) 1
1ˆ ˆk T k Tf H H W f H yβλ

−
+ = +   (6) 

where ˆ kf  is the estimate calculated in the kth iteration. In this way, the problem becomes linear at each individual step. 

3. HYPER-PARAMETER SELECTION METHODS 

The objective function in (4) contains a scalar parameter λ  which has a role in determining the behavior of the 

reconstructed field f̂ . Small parameter values makes data fidelity term; i.e. first term in (4), dominate the solution 
whereas large values of λ  impose greater importance to prior term and ensure that point-based features are enhanced. 
To choose λ  in a data-driven way, we consider two methods: Stein’s unbiased risk estimator (SURE) and generalized 
cross-validation (GCV).    
3.1 Stein’s unbiased risk estimator 

Stein’s unbiased risk estimator (SURE) is developed by Stein [4] for parameter selection in linear regression and it has 
been adapted for the solution of inverse problems. SURE aims to minimize the predictive risk: 

 
22

2 2

1 1 ˆp Hf Hf
n nλ λ= −   (7) 

which is basically mean squared norm of the predictive error. Here f̂λ  represents the solution obtained with parameter 

λ  and f  is the true, unknown reflectivity field. In fact, the predictive error is not computable since f  is unknown, but 
it can be estimated using available information. 

It has been shown that [4] an unbiased estimator of (7) is 

 ( ) ( ) ( )
2

2 2
2

1

1 2 n

i i
i

U r r y
n n

σλ λ λ σ
=

= − ∂ ∂ +∑   (8) 

where ( ) ˆr Hf yλλ = −  and 2σ  is the varience of the noise w . ( )U λ  is called Stein’s unbiased risk estimator 
(SURE). It has been shown that [6] SURE takes the following form after some intermediate operations: 

 ( ) ( ) ( )
2

2 2
2

1 2U r trace A
n n λ

σλ λ σ= + −   (9) 

where 1
ˆ̂

T
ff

A HJ Hλ
−=  and 2 2

ˆˆ
ˆ

ff
J J f= ∂ ∂ . For the cost function given in (4), 

  
( )

( )
4 22 2

ˆ̂
ˆ ˆ1

p
T

i iff
J H H diag p f p fλ β β

−⎛ ⎞⎛ ⎞ ⎛ ⎞= + + − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
.  (10) 
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The method chooses the parameter which minimizes ( )U λ . Numerical results suggest that λ  which minimizes the 

predictive risk will yield a small value for the estimation error of f . It is also noteworthy that SURE requires prior 
knowledge on the noise, namely its variance, in the model (1). 

3.2 Generalized cross-validation 

Another parameter selection method is generalized cross-validation (GCV) which is also an estimator for the predictive 
risk (7) and has the advantage of being independent of the prior knowledge on the noise w . The idea of GCV is as 
follows: choose λ  such that the solution obtained in the presence of a missing data point predicts the missing point in a 
proper manner, when averaged over all ways of removing a point. The method intends to minimize the GCV function: 

 ( )
( )
( )

21
2

21

n

n

r
GCV

trace I Aλ

λ
λ =

⎡ ⎤−⎣ ⎦
  (11) 

where ( )r λ  and Aλ  are the same quantities in the SURE setting. 

4. NUMERICAL OPTIMIZATION TOOLS 
Both SURE and GCV involve computational difficulties when considered in the framework of non-quadratic 
regularization.1 First of all, they require the computation of the matrix Aλ  through large scale matrix multiplications and 

inversions which are not practical at all. Then they require the solution of an optimization problem over λ . To clarify 
the implementation details we discuss some numerical tools we use in the solution.  

We note that all the matrix vector products in (6) are actually carried out by convolution operations (in the Fourier 
domain) such that there is no need to construct the convolution matrix H  and deal with memory-intensive matrix 
operations. However convolutional operations do not help for evaluation of the GCV cost in (11) since it involves the 
trace of the matrix Aλ . Instead of calculating Aλ  one can approximate the trace of Aλ  by means of randomized trace 
estimation [8]. If q  is a white noise vector with zero mean and unit variance, then an unbiased estimator for 

( )trace Aλ  can be constructed based on the random variable ( ) Tt q A qλλ = . The trace estimate can be computed as 

follows: first generate a number of independent realizations of q  and compute ( )t λ  for each, and then take the 

arithmetic mean of the random variable ( )t λ  to be the trace estimate. In our experiments we also observed that the 

randomized trace estimate approaches successfully to the actual trace.  Note that we compute ( )t λ  using convolution 

operations without explicitly constructing the matrix Aλ . This method makes the computation of the GCV function 

feasible for a given λ . However there is still the issue of finding the minimizers of the GCV cost.  

One way to find the minimum of the GCV cost is brute-force searching. After determining a reasonable range for values 
of λ , the range is divided into grids and solution is obtained for each grid point. Then,  λ  which gives the  smallest 
function value is selected as the minimizer. Since this may yield extensive computations, appropriate optimization 
methods can be employed instead. Most of the methods are based on gradient information of the functions. However 
evaluation of the gradient of GCV appears to be a problem. Due to the complicated dependence of (9) and (11) on λ  

through f̂λ , it is not straightforward to compute the gradient. This difficulty leads us consider two different approaches: 
derivative-free optimization techniques and numerical computations of the gradient. 

   

 

 1In this section we only mention GCV for convenience, all the procedure is identical for SURE. 

68



 

 

Golden section search is a one dimesional optimization method and does not require the gradient information [9]. This 
approach assumes that the function is unimodal (at least in an interval [ ],a b ), which is the case for GCV cost according 

to our observations. We first determine an interval [ ],a b  for λ  and choose two initial test points 1λ  and 2λ  in interval 

such that 1 2λ λ< . Using those particular choices of λ ’s we find the solution f̂λ  and the GCV value for each. After 

evaluating GCV( 1λ ) and GCV( 2λ ) one of the following cases produces a new interval which is the subset of [ ],a b . 

Case 1: If GCV( 1λ ) >  GCV( 2λ ), then the new interval is [ ]1,bλ .  

Case 2: If GCV( 1λ ) ≤  GCV( 2λ ), then the new interval is [ ]2,a λ .  

As a result, the interval is shrinked and two new test points are selected such that they divide the interval into the Golden 
section. Golden ratio requires: 

 
length of whole interval length of larger part of interval

length of larger part of interval length of smaller part of interval
=  

Thus the algorithm ends up with an interval of uncertainity; i.e. it does not provide a single point as the minimizer.  

Since the challenge is the exact derivative computation we also consider approximating derivatives through finite 
differences. With an initial λ  at hand we move to a close point λ ε+  and find the solution f̂λ  and the GCV value for 

each and calculate the finite difference of GCV at λ . Once the approximated gradient is found one can choose one of 
the line search algorithms to obtain the optimal point [10]. Since we don’t want to deal with second order derivatives we 
choose a line search algorithm which uses a descent direction and thus does not require second order derivatives. To 
determine the step length one can use a step-length selection algorithm such as interpolation or use backtracking. In our 
experiments we apply the backtracking algorithm. The algorithm takes a step and checks the Armijo condition; if it is not 
satisfied, the step length is reduced and Armijo condition is checked again. The backtracking continues until a step 
length satisfying Armijo condition is found. Initial λ  to be used in this procedure may be selected using a 
computationally less expensive method. For this task we employ the parameter selection approach in [11]. This method 
suggests the regularization parameter to be selected as 2 log nλ σ=  in a basis pursuit framework. Here σ  is the 
standard deviation of the noise in (1) and n  is the length of the noise vector.  

5. EXPERIMENTS 
We present 2D image reconstruction experiments based on the AFRL “Backhoe Data Dome and Visual-D challange 
problem” which consists of simulated wideband (7-13 GHz), full polarization, complex backscatter data from a backhoe 
vehicle in free space [7]. The backscatter data are available over a full upper 2π  steradian viewing hemisphere. In our 
experiments, we use VV polarization data, centered at 10 GHz, and with an azimuthal span of 110° (centered at 45°). 
Advanced imaging strategies have enabled resolution-enhanced wide angle SAR imaging. We consider the point-
enhanced composite imaging technique [12] and show experimental results in this framework. For composite imaging, 
we use 19 subapertures, with azimuth centers at 0°, 5°, …, 90°, and each with an azimuthal width of 20°. We consider 
two different bandwidths: 500 MHz and 1 GHz. For each of these bandwidths, we consider data with three different 
signal-to-noise ratios: 25 dB, 20 dB and 10 dB.  

To be able to carry out some quantitative analysis, we have also created a synthetic problem which simulates imaging of 
a point-like scattering field in a narrow-angle imaging scenario. The field consists of five scatterers. We simulate SAR 
data with 1 GHz bandwidth and 25 dB SNR. We choose 1p =  in (3). The underlying true scene, the conventional 
reconstruction and reconstructed images with different regularization parameters are shown in Figure 1. In these images 
it is obviously seen that small parameter values are insufficient to enhance point-based features whereas large parameter 
values overregularize the solution and cause some scatterers to be unobservable. The image in Figure 1(d) is obtained 
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Figure 1. SAR images of a synthetic problem.  (a) Underlying field consisting of point-like scatterers. (b) Conventional SAR image of 
the field. (c) Point-enhanced image with small λ. (d) Point-enhanced image with λ selected by GCV. (e) Point-enhanced image with 
large λ. 

using λ  selected by the GCV method. It appears to be an accurate reconstruction in the sense that it preserves all the 
five scatterers and does not cause significant artifacts.  

In Figure 2, we show the SURE (solid, blue) and GCV (dashed, green) curves for the synthetic problem. The red (dash-

dotted) curve indicates the estimation error which we define as 
2

2

1 f̂ f
n

− . The minimum point for each curve is 

enclosed by a square. Both SURE and GCV appear to be leading to slight under-regularization. Generally, SURE tends 
to choose a smaller λ  value than GCV does. In fact, both functions are quite flat around the minimum; hence they are 
not very sensitive therein. Fortunately, the estimation error is not very sharp around the minimum either; and therefore 
SURE and GCV give reasonable results in terms of the estimation error. We also show the choice of the method 
proposed by Chen [11], and it behaves like an over-regularizer for this problem setting. It can be used as the initial 
parameter in the optimization procedure. However, we cannot be sure about the behaivour of this method for different 
settings since it depends only on the standard deviation of the noise and the size of the problem. For example; it will not 
respond to changes in the experimental scenario such as bandwidth (and in turn range resolution). 

We now demonstrate the behavior of Golden section search and numerical gradient descent method for optimization. In 
Figure 3, we show the paths displaying the progress of the methods. For Golden section search algorithm  we choose the 
initial interval the same as the interval we choose in brute-force searching ( 2 010 ,10−⎡ ⎤⎣ ⎦ ). Golden section search 

progresses quite fast and ends up with an interval requiring small number of reconstructions. Finding an interval of 
uncertainity does not appear to be a trouble since SURE and GCV curves are quite flat around the minimum. In Figure 
3(b) we show the progress of the line search algorithm based on numerical gradient computation. Red cross markers 
indicate the λ  value for progressing iterations (For better visualization we do not show the points at each iteration; 
instead one of every three iteration points is marked). For both methods the most important thing is the number of 
evaluations of GCV and SURE. Let’s consider a particular example, in which one would have to do 20 reconstructions to 
be able to determine λ  with 25 10−± ×  variation in a brute-force search. We observe that it is possible to obtain the 
same precision with about 4 reconstructions in Golden search. Similarly, the numerical gradient computation-based 
algorithm provides almost the same advantage. 
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Figure 2. SURE, GCV and Estimation Error curves for the synthetic image consisting of point-like scatterers. Minimum points are 
enclosed by squares. The point enclosed by a circle is the parameter selected by the method proposed in [11]. 

 
(a)                                                                                                (b) 

Figure 3. Paths for optimization methods. (a) Right (green) and the left (red) endpoints of the intervals for Golden section search. (b) 
Improvement steps in line search for numerically computed gradient descent..  

For backhoe data we cannot demostrate the mean square error of estimated f̂λ  since the underlying field is not available 
a priori. Therefore we investigate the performance of the methods visually. First, we display the structure of SURE and 
GCV for backhoe data with bandwidth of 1 GHz and 500 MHz in Figure 4. A similar behavior to the synthetic problem 
is observed with this data. The curves are flat near the minimum, moreover the SURE curve is very flat for a wide range.  

In Figure 5, we show the point-enhanced composite images obtained with different regularization parameters. Figure 
5(c) is the image reconstructed using the parameter which is selected by GCV. Ideally, we would like to be able to 
observe the scattering centers of the backhoe in a good reconstruction. From this point of view GCV seems to serve the 
purpose. The under-regularized image in Figure 4(a) is dominated by artifacts and the over-regularized image in Figure 
4(e) does not display the the structure of the backhoe correctly because of the unobservable scattering parts. 
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Figure 4. SURE (left) and GCV (right) curves for a subaperture image reconstructed from the data with SNR=20 dB and bandwidth of 
1 GHz.  

 
(a)                                    (b)                                      (c)                                     (d)                                     (e) 

Figure 5. Feature-enhanced composite images using different ’s, bandwidth is 1 GHz and SNR=20 dB. GCVλ denotes the parameter 

selected by GCV. (a) 210 GCVλ λ−= . (b) 110 GCVλ λ−= . (c) GCVλ λ= . (d) 10 GCVλ λ= . (e) 210 GCVλ λ= . 

Different pl -norm’s can be used in (3). A smaller value of p  implies less penalty on large pixel values as compared to 
a larger p . This property favors a field with smaller number of dominant scatterers. This behavior can be observed in 
images obtained for different p  values displayed in Figure 6.   

In Figures 7, 8 and 9 we demonstrate the feature-enhanced composite images in the presence of noise. In these 
experiments we choose 1p =  in (3). We consider two bandwidths: 500 MHz and 1 GHz. It is possible to choose an  

(a)                           (b)                            (c)                           (d) 
Figure 6. Composite, point-enhanced SAR images for p=0.6, 0.8, 1, 1.2. Regularization parameter λ is selected with GCV. 
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 (a)  

(b)  

(c)  

(d)  

(e)  
                                                           (1 GHz)                                (500 MHz) 

Figure 7. SAR images of the backhoe using bandwidths of 1 GHz and 500 MHz in the presence of SNR=25 dB. (a) Composite 
imaging. (b) Composite, point-enhanced imaging using small . (c) Composite, point-enhanced imaging using large λ. (d) Composite, 
point-enhanced imaging using λ selected by SURE. (e) Composite, point-enhanced imaging using λ selected by GCV. 

individual λ  for each subaperture seperately, however that would be computationaly very expensive. We have observed 
that the optimum λ  does not vary significantly among different subapertures; thus we choose λ  for one subaperture 
and use the same value for others. The results demonstrated in Figure 6 are obtained from the data with SNR=25 dB. The 
images in (a) are the conventional composite images. Images in (b) and (c) are obtained by very small and very large  
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(a)   

(b)  

(c)  

(d)  

(e)  
                                                                       (1 GHz)                                (500 MHz) 

Figure 8. SAR images of the backhoe using bandwidths of 1 GHz and 500 MHz in the presence of SNR=20 dB. (a) Composite 
imaging. (b) Composite, point-enhanced imaging using small λ. (c) Composite, point-enhanced imaging using large λ. (d) Composite, 
point-enhanced imaging using λ selected by SURE. (e) Composite, point-enhanced imaging using λ selected by GCV. 

parameters, respectively. Results from SURE and GCV are shown in (d) and (e), respectively. The conventional 
composite images do not preserve the scatterers of the backhoe. Small and large parameters have the effects mentioned 
before and displayed in Figure 4. SURE and GCV are able to choose an acceptable λ  value in different noise levels and 
resolutions. Figure 7 and 8 also shows feature-enhanced composite images for different parameters obtained from data 
with SNR=20 dB and SNR=10 dB, respectively. Obviously, sensitivity to parameter choice increases at lower SNR’s and 
SURE and GCV provide reasonable solutions. 
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 (a)   

(b)   

(c)   

                                 (d)       

(e)   
                                                                  (1 GHz)                                   (500 MHz) 

Figure 9. SAR images of the backhoe using bandwidths of 1 GHz and 500 MHz in the presence of SNR=10 dB. (a) Composite 
imaging. (b) Composite, point-enhanced imaging using small λ. (c) Composite, point-enhanced imaging using large λ. (d) Composite, 
point-enhanced imaging using λ selected by SURE. (e) Composite, point-enhanced imaging using λ selected by GCV. 

6. CONCLUSION 
We have considered the problem of hyper-parameter selection in non-quadratic regularization-based radar image 
formation. We have proposed to use SURE and GCV to select the regularization parameter for this problem and 
demonstrated images formed using parameters selected by SURE and GCV. We have proposed numerical solutions for 
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the optimization problems involved in these methods. We have observed that these methods lead to slight under-
regularization but the parameter choices are reasonable. Regularized solutions become more sensitive to parameter 
choice at lower SNR’s, thus the role of the parameter selection methods gains significance. 
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ABSTRACT

We explore the application of a homotopy continuation-based
method for sparse signal representation in overcomplete dictio-
naries. Our problem setup is based on the basis pursuit frame-
work, which involves a convex optimization problem consisting
of terms enforcing data fidelity and sparsity, balanced by a regu-
larization parameter. Choosing a good regularization parameter
in this framework is a challenging task. We describe a homo-
topy continuation-based algorithm to efficiently find and trace all
solutions of basis pursuit as a function of the regularization pa-
rameter. In addition to providing an attractive alternative to ex-
isting optimization methods for solving the basis pursuit problem,
this algorithm can also be used to provide an automatic choice for
the regularization parameter, based on prior information about the
desired number of non-zero components in the sparse representa-
tion. Our numerical examples demonstrate the effectiveness of this
algorithm in accurately and efficiently generating entire solution
paths for basis pursuit, as well as producing reasonable regulariza-
tion parameter choices. Furthermore, exploring the resulting so-
lution paths in various operating conditions reveals insights about
the nature of basis pursuit solutions.

1. INTRODUCTION

Representing data in the most parsimonious fashion in terms of re-
dundant collections of generating elements is at the core of many
signal processing applications. However, finding such sparse rep-
resentations exactly in terms of overcomplete dictionaries involves
the solution of intractable combinatorial optimization problems.
As a result, work in this area has focused on approximate meth-
ods, based on convex relaxations [1] or greedy methods, lead-
ing recently to the development of conditions under which such
methods yield maximally sparse representations [2–6]. One such
method, involving a convex̀1 relaxation, is basis pursuit [1]. Its
noisy version (allowing for some residual mismatch to data) poses
the following optimization problem:

J(x; λ) = ‖y − Ax‖2
2 + λ‖x‖1, A ∈ R

M×N (1)

wherey denotes the data (signal whose representation we seek),
A is the overcomplete representation dictionary (M < N ), and
λ ≥ 0 is a scalar regularization parameter, balancing the tradeoff
between sparsity and residual error. For a fixedλ, the problem can
be solved by finding the minimizer̂x of (1), using e.g. quadratic

This work was supported by the Army Research Office under Grant
DAAD19-00-1-0466.

programming. However choosing the regularization parameter is
a difficult task, and some prior knowledge, either of the desired
residual error (e.g. based on the noise level), or of the underlying
sparse vectorx, has to be exploited. One piece of information
aboutx might be the number of non-zero components. However,
even if such information is available, how to use it directly in the
basis pursuit framework is not straightforward.

Motivated by these observations, we describe a computation-
ally efficient approach for sparse signal representation based on
the homotopy continuation method of [7]. A related method has
also been developed in [8], and has been linked to greedy meth-
ods. The main focus in [7] is the solution of an overdetermined
least-squares problem with an`1-norm constraint. We are mostly
interested in the unconstrained formulation in (1), in the under-
determined (M < N ) case. In particular, we propose a simple
algorithm to find and trace all solutionŝx(λ) of basis pursuit as a
function of the regularization parameterλ. The functionJ(x; λ)
is convex and hence continuous, but it is not differentiable when-
everxi = 0 for somei, due to the term‖x‖1 =

P

i
|xi|. The

main idea of the approach is that‖x‖1, when restricted to the sub-
set of non-zero indices ofx, is locally a linear function ofx. This
allows one to solve the local problems (for a limited range ofλ)
analytically, and piece together local solutions to get solutions for
all regions ofλ. The resulting algorithm generates solutions for
all λ with a computational cost that is comparable to solving basis
pursuit with quadratic programming for a singleλ. This procedure
can also be used to select the regularization parameterλ based on
information about the number of non-zero components inx. In
particular, a reasonable choice is the minimumλ that produces
the desired number of non-zero components inx̂(λ). Our numer-
ical experiments demonstrate the effectiveness of this algorithm
in generating the solution path accurately. Furthermore, exploring
the structure of such solution paths reveals useful insights about
the sensitivity of the problem to measurement noise, as well as to
the nature of the overcomplete dictionary used.

2. NON-SMOOTH OPTIMALITY CONDITIONS

First we review non-smooth optimality conditions for convex func-
tions and their implications for the problem in (1).

The subdifferential of a convex functionf : R
N → R at

x ∈ R
N is defined as the following set:

∂f(x) = {ξ ∈ R
N |f(y) ≥ f(x) + ξ

T (y−x) ∀ y ∈ R
N} (2)

Each element of∂f(x) is called a subgradient off at x. The
subdifferential is a generalization of the gradient off . In fact, if f
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is convexanddifferentiable at a pointx then

∂f(x) = {∇f(x)} (3)

i.e. the subdifferential consists of a single vector, the gradient off

atx (the only subgradient is the gradient).
The non-smooth optimality conditions state that the subdiffer-

ential off atx has to contain the0-vector forf to achieve a global
minimum atx:

Theorem 1 ( Non-smooth optimality conditions) If
f : R

N → R is convex, thenf attains a global minimum atx if
and only if0 ∈ ∂f(x).

The subdifferential ofg(x) = ‖x‖1 is the following set:

u(x) , ∂g =

8

>

>

>

>

<

>

>

>

>

:

u ∈ R
N

˛

˛

˛

˛

˛

ui = 1 if xi > 0

ui = −1 if xi < 0

ui ∈ [−1, .., 1] if xi = 0

9

>

>

>

>

=

>

>

>

>

;

(4)

The interesting part of this subdifferential is when some of the
coordinates are equal to0, whereg is non-differentiable. Thenui

is not a scalar, it is a set.
The subdifferential off(x) = J(x; λ) from (1), for a fixed

λ = λ̃, is the set

∂f =
n

2A′(Ax − y) + λ̃u(x)
o

(5)

whereu(x) is defined above in (4). Suppose thatx̃ = arg minx J(x; λ̃).
Then, in order to have0 ∈ ∂f(x̃), the following equation must
have a solution for some vectorũ ∈ u(x̃):

2A′

Ax̃ + λ̃ũ = 2A′

y (6)

Let us consider an arbitrary vectorx more closely. LetIon be
the support ofx, i.e. the set of indicesi wherexi 6= 0. Also let
Ioff be the complement ofIon, i.e. Ioff = {i | xi = 0}. Put
all entriesxi on the support ofx into a vectorxon, and the ones
off the support ofx into xoff (that makesxoff = 0). Assume,
without loss of generality, thatx′ = [x′

on , x′

off ], i.e. the non-
zero components appear first. Let us splitu in the same fashion,
according to which indices lie on or off the support ofx, into uon

anduoff . Also, let us split the squareN ×N matrixG = 2A′A

into 4 parts (there are 4 possibilities of whether the row-index and
the column-index correspond to our setsIon andIoff ): Gon,on,
Gon,off , Goff,on, Goff,off . Due to symmetry of the matrixG,
we haveGon,off = G′

off,on. To simplify the notation further, let
us useΦ = Gon,on, Ψ = Gon,off , andΥ = Goff,off . Finally,
let z = 2A′y, and splitz in the same way intozon andzoff .

Returning to our fixed̃x and λ̃, using our new notation, we
can rewrite (6) as

„

Φ Ψ
Ψ′ Υ

« „

x̃on

0

«

+ λ̃

„

ũon

ũoff

«

=

„

zon

zoff

«

(7)

Suppose that we know̃x. The elements of̃uon are all determined:
they are equal to1 or −1, corresponding to the signs of elements
of x̃on. To determinẽuoff , split equation (7) into two parts to get:

Φx̃on + λ̃ũon = zon (8)

Ψ′

x̃on + λ̃ũoff = zoff

Thus we can find̃uoff = 1

λ̃
(zoff − Ψ′x̃on). Sincex̃ is optimal

(for someλ = λ̃), the elements of̃uoff are constrained to lie in
[−1, 1].

3. FINDING SOLUTIONS FOR ALL λ

In the last section we characterizedũ given that we know̃x, the op-
timal solution for a particular̃λ. Now starting withλ = λ̃, we in-
crementally changeλ to find and trace optimal solutionŝx(λ) for
all λ. This forms the basis of the homotopy continuation method.

Suppose that̃x is the unique solution for̃λ (whereλ̃ > 0),
then from (8) we have1

x̃on = Φ−1(zon − λ̃ũon) (9)

ũoff =
1

λ̃
(zoff − Ψ′Φ−1

zon) + Ψ′Φ−1
ũon (10)

No elements of̃xon are equal to zero, hence there exists a range of
λ, which includes̃λ, for which all entries ofxon(λ) = Φ−1(zon−
λũon) will be nonzero. That means that throughout this range the
support ofx(λ) will not be reduced. By larger changes inλ we
can force one of the components ofxon(λ) to zero. In addition,
there exists a range ofλ, which includes̃λ, for whichuoff (λ) =
1

λ
(zoff −Ψ′Φ−1zon)+Ψ′Φ−1ũon does not become equal to1 in

absolute value, i.e. all entries ofuoff (λ) belong to[−1, 1]. In the
intersection of these two ranges ofλ, the vectorsx(λ) andu(λ)
will satisfy the non-smooth optimality conditions forJ(x(λ); λ),
hencex̂(λ) = x(λ) for λ in the above region. The vectorx(λ)
is obtained by putting entries ofxon(λ) into the corresponding
entriesx̂i(λ), for i ∈ Ion, and zeros fori ∈ Ioff . The vector
u(λ) is obtained by putting̃uon (which does not change whileλ
is in the above region) into the components withi ∈ Ion, and
uoff (λ) for i ∈ Ioff .

In this way, we obtain all solutions for some range ofλ’s. The
range can be easily calculated by solving for critical values ofλ

closest tõλ, which make an entry of̂xon(λ) turn zero, or an entry
of uoff (λ) reach unity in absolute value. This requires solving a
set of scalar linear equations.

Now the next step is to find the support ofx̂(λ), asλ leaves
the region. We only need to search locally, sincex̂(λ) is contin-
uous forλ > 0 [7]. For the case where changingλ forces one
component ofxon(λ) to zero, recalculating the support is trivial:
we remove the indexi for whichxi was set to zero fromIon, and
put it intoIoff . For the case where an entry ofuoff (λ) becomes
equal to1 in absolute value, we transfer the corresponding indexi

from Ioff into Ion. The corresponding index ofuon is set to the
sign of the entry ofuoff (λ) which reached1 in absolute value.
Thus, after recomputing the support and the sign-pattern of so-
lutions, we can proceed in the same fashion as before, computing
the boundary of the new region forλ, finding the optimal solutions
inside it, and entering a new region.

To start the algorithm, it is easiest2 to considerλ0 = ∞, or
equivalentlyλ0 = 2‖A′y‖

∞
, which satisfieŝx(λ) = 0 for λ >

1In this case, it can be shown that the matrixΦ is invertible.
2Another possibility is to start withλ0 = 0, and increase it until̂x(λ)

becomes0. Assuming thatA has full row rank, this starting point requires
the solution of the problem:min ‖x‖1 subject toy = Ax. The solution
corresponds toλ = 0+. Whenλ = 0 there exist multiple solutions ifA
has a nontrivial null-space. Solving the linear program picks the sparsest
solution, which lies on the solution patĥx(λ).
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λ0. Then, following the procedure described above, the algorithm
produceŝx(λ) for all λ ≥ 0, and terminates whenλ reaches0.

The algorithm can exploit prior information about the desired
number of non-zero elements in the representation to produce an
automatic choice for the regularization parameterλ for basis pur-
suit. In particular, among allλ for which x̂(λ) has the desired
sparsity, the smallest one can be a reasonable choice in many sce-
narios, as it leads to the smallest residual,‖y − Ax̂(λ)‖2. One
might also consider other choices forλ, guided by the structure of
the solution path, as we discuss in Section 4.

The computational complexity of the algorithm is dominated
by the inversion of the matrixΦ at each breakpoint, which is bounded
by O(M3), whereM is the number of rows ofA. However, at
each breakpoint the rank of the matrixΦ is changed by adding
(or removing) a row and a column, hence instead of computing
the inverse from scratch, rank-one updates can be done at the cost
of O(M2). Empirically, the number of breakpoints is aroundM ,
but more careful analysis is in order. Thus, the cost of finding
the whole solution path is roughly the same as for one iteration
of the Newton’s method to solve the problem in (1) for a fixedλ,
i.e. O(M3). In addition, if one does not need the full solution
path x̂(λ), but only the path from̂x(λ0) = 0 to a solution with
L components, then the complexity is bounded byO(L3), with L

instead ofM , and the number of breakpoints is typically aroundL.
Thus, the method is extremely efficient in computing very sparse
solutions starting from̂x(λ0) = 0.

To conclude the section, let us comment on the numerical sta-
bility of the algorithm. When we switch from one region to an-
other, the only information that is carried over is the support of the
new optimal solution, and the signs. Hence, if a small numerical
error due to finite precision is made in computing the optimal so-
lution for one region ofλ (small enough not to affect the support
and signs of the solution at the region boundary), then in the next
region this error has no effect at all. Thus, the algorithm has a
self-stabilizing property.

4. NUMERICAL EXAMPLES

4.1. Small Analytical Example

First we consider a very small example withA ∈ R
2×3:

A =

„

1 2 3
1 3 1.5

«

, and y =

„

6
6

«

We apply the algorithm from Section 3, and the resulting solution
path is shown in Figure 1. For this small problem, we are also
able to compute the entire solution path analytically, and observe
that the algorithm produces it accurately. The two triangles are the
intersections ofR+ with the planesx1 + 2x2 + 3x3 = 6, and
x1 + 3x2 + 1.5x3 = 6. The solution patĥx(λ) starts atλ = 60,
with x = 0. As λ starts to decrease, the solution path enters
a segment with one non-zero component:x2 = 30

13
− λ

26
, and

x1 = x3 = 0. The segment satisfies optimality conditions until
λ = 28.8, after whichx3 becomes non-zero. The solution path
from λ = 28.8, down toλ = 0+ is x2 = 3

2
− λ

96
, x3 = 1 − 5λ

144
,

andx1 = 0. The minimum-norm solution, corresponding toλ =
0, is x̂MN = [.4968, 1.3758, .9172], is not sparse.

4.2. Larger Numerical Examples

Now we demonstrate the application of the algorithm on larger
examples. We consider a problemy = Ax + n, whereA is an
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Fig. 1. Solution path for a small problem.

overcomplete20×100 discrete cosine transform (DCT) dictionary,
andn is zero-mean Gaussian noise. Dictionaries of this type arise
naturally in many signal processing applications, one example be-
ing source localization with sensor arrays, where the observation
model for linear arrays involves a discrete Fourier transform (DFT)
dictionary [9]. In the specific example we consider here,x has two
non-zero components, both equal to 1. In Figure 2 (top) we plot
the solution path for noiseless data (n = 0), in the middle plot for
small amounts of noise (SNR = 15 dB), and in the bottom plot for
moderate amounts of noise (SNR = 5 dB). Each piecewise-linear
curve in these plots corresponds to one componentx̂i(λ). We also
evaluate the solution at three intermediate values ofλ in each lin-
ear segment, and compare it to a solution of the corresponding
optimization problem in (1) using quadratic programming. The
solutions agree almost perfectly, up to negligible numerical errors
for all the examples.

Consider the top plot of Figure 2 which depicts the noiseless
scenario. The smallestλ which leads to two non-zero components
is λ = 0+, which is the best parameter choice in this case. The
corresponding solution found by homotopy-continuation has two
non-zero entries equal to1, and agrees with the original signalx.
In the middle plot, where the data are slightly noisy, the solution
path ends at a non-sparse vector, which is close to the optimal so-
lution of the noiseless problem (i.e. the other non-zero components
are small). The smallestλ yielding exactly two non-zero compo-
nents isλ = 1.4548. We note that the corresponding solution has
non-zero indices not exactly equal, but very close to the ones ofx.
The solution path suggests that an alternative to this choice ofλ is
to to pick a non-sparse solution forλ = 0+ and threshold it, which
would recover the exact indices in this mildly noisy scenario. In
the bottom plot, the noise is sufficient to substantially change the
solution path, but the smallestλ which leads to two non-zero el-
ements (λ = 0.6526) still produces a reasonable solution, which
is depicted in Figure 3 (we plot all components ofx̂i(λ) vs. i).
Note that the indices of non-zero elements ofx̂(λ) are very close
to those of the truex. This ’stability’ of indices of non-zero com-
ponents occurs due to the special structure ofA: nearby columns
of A are almost parallel for our overcomplete DCT matrixA, and
columns which are far apart are nearly orthogonal. This structure
is what allows sparse signal representation ideas to be applied to
source localization-type problems, even for highly overcomplete
dictionaries [9].
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Fig. 2. Solution pathŝx(λ) for all λ with varying levels of noise.
A is 20 × 100. Top: no noise. Middle: SNR = 15 dB. Bottom:
SNR = 5 dB.
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Fig. 3. x̂(λ) for λ = 0.6526, the minimumλ leading to two non-
zero components. SNR = 5 dB.

The above set of experiments were done for a severely over-
complete dictionary (A is 20×100). Let us now consider a mildly
overcomplete,20 × 23 DCT dictionary,A. This problem is less
demanding than the previous scenario in the sense that the desired
signal representation is on a “coarser grid” of dictionary elements
(leading to smaller mutual coherence [2]). In Figure 4, we observe
that for noisy data the results exhibit excellent stability: even with
moderate amounts of noise, SNR = 5 dB, the two non-zero com-
ponents are clearly visible for any choice ofλ. We note that these
components exactly match the indices of non-zero elements ofx.

Some observations can be drawn from the above experiments.
The components of̂x(λ) tend to decrease asλ increases, but as
can be seen from the middle plot in Figure 2, a component which
was equal to0 may become non-zero asλ increases. We also ob-
serve that sparse representation is easier in dictionaries with well-
separated elements (in the sense of [2]). However, all hope is not
lost even for severely overcomplete dictionaries, as long as they
have certain structure.

5. CONCLUSION

We have described a simple and efficient algorithm to generate en-
tire solution paths (as a function of the regularization parameter) of
basis pursuit for sparse signal representation in overcomplete dic-
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Fig. 4. Solution pathŝx(λ) for all λ with varying levels of noise.
A is 20 × 23. Top: SNR = 15 dB. Bottom: SNR = 5 dB.

tionaries. The algorithm can also be used to identify good choices
for the regularization parameter. The ease in generating the solu-
tion paths make them a useful tool for empirical exploration of the
behavior of basis pursuit in various scenarios.
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Abstract—We present a source localization method based on a
sparse representation of sensor measurements with an overcom-
plete basis composed of samples from the array manifold. We
enforce sparsity by imposing penalties based on the 1-norm. A
number of recent theoretical results on sparsifying properties of
1 penalties justify this choice. Explicitly enforcing the sparsity

of the representation is motivated by a desire to obtain a sharp
estimate of the spatial spectrum that exhibits super-resolution.
We propose to use the singular value decomposition (SVD) of the
data matrix to summarize multiple time or frequency samples.
Our formulation leads to an optimization problem, which we solve
efficiently in a second-order cone (SOC) programming framework
by an interior point implementation. We propose a grid refinement
method to mitigate the effects of limiting estimates to a grid of
spatial locations and introduce an automatic selection criterion
for the regularization parameter involved in our approach. We
demonstrate the effectiveness of the method on simulated data by
plots of spatial spectra and by comparing the estimator variance to
the Cramér–Rao bound (CRB). We observe that our approach has
a number of advantages over other source localization techniques,
including increased resolution, improved robustness to noise,
limitations in data quantity, and correlation of the sources, as well
as not requiring an accurate initialization.

Index Terms—Direction-of-arrival estimation, overcomplete
representation, sensor array processing, source localization,
sparse representation, superresolution.

I. INTRODUCTION

SOURCE localization using sensor arrays [1], [2] has been
an active research area, playing a fundamental role in many

applications involving electromagnetic, acoustic, and seismic
sensing. An important goal for source localization methods is
to be able to locate closely spaced sources in presence of con-
siderable noise. Many advanced techniques for the localization
of point sources achieve superresolution by exploiting the pres-
ence of a small number of sources. For example, the key com-
ponent of the MUSIC method [3] is the assumption of a low-di-
mensional signal subspace. We follow a different approach for
exploiting such a structure: We pose source localization as an
overcomplete basis representation problem, where we impose a
penalty on the lack of sparsity of the spatial spectrum.

Our approach is distinctly different from the existing source
localization methods, although it shares some of their ingre-
dients. The most well-known existing nonparametric methods
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include beamforming [2], Capon’s method [4], and subspace-
based methods such as MUSIC [3]. Some additional methods
(Root-MUSIC and ESPRIT) [1] require the assumption that the
array of sensors is linear. Beamforming spectrum suffers from
the Rayleigh resolution limit, which is independent of the SNR.
MUSIC and Capon’s method are able to resolve sources within
a Rayleigh cell (i.e., achieve super-resolution), provided that the
SNR is moderately high, the sources are not strongly correlated,
and the number of snapshots is sufficient. A family of parametric
methods based on the maximum likelihood paradigm, including
deterministic maximum likelihood (DML) and stochastic max-
imum likelihood (SML) [1], enjoy excellent statistical proper-
ties, but an accurate initialization is required to converge to a
global minimum. By turning to the sparse signal representation
framework, we are able to achieve super-resolution without the
need for a good initialization, without a large number of time
samples, and with lower sensitivity to SNR and to correlation
of the sources.

The topic of sparse signal representation has evolved very
rapidly in the last decade, finding application in a variety of
problems, including image reconstruction and restoration [5],
wavelet denoising [6], feature selection in machine learning [7],
radar imaging [8], and penalized regression [9]. There has also
been some emerging investigation of these ideas in the context
of spectrum estimation and array processing [10]–[14]. Sacchi
et al. [10] use a Cauchy-prior to enforce sparsity in spectrum
estimation and solve the resulting optimization problem by iter-
ative methods. Jeffs [11] uses an -norm penalty with to
enforce sparsity for a number of applications, including sparse
antenna array design. Gorodnitsky et al. [12] apply a recur-
sive weighted minimum-norm algorithm called focal underde-
termined system solver (FOCUSS) to achieve sparsity in the
problem of source localization. It was later shown [15] that
the algorithm is related to the optimization of penalties with

. The work of Fuchs [13], [14] is concerned with source
localization in the beamspace domain, under the assumption
that the sources are uncorrelated, and that a large number of
time samples is available. The method attempts to represent the
vector of beamformer outputs to unknown sources as a sparse
linear combination of vectors from a basis of beamformer out-
puts to isolated unit power sources. The method uses the
penalty for sparsity and the penalty for noise. Prior research
has established sparse signal representation as a valuable tool
for signal processing, but its application to source localization
has been developed only for very limited scenarios. We start
with the ideas of enforcing sparsity by penalties and extend
them to a general framework that is applicable to a wide variety
of practical source localization problems.

In its most basic form, the problem of sparse signal repre-
sentation in overcomplete bases asks to find the sparsest signal

1053-587X/$20.00 © 2005 IEEE81
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to satisfy , where is an overcomplete
basis, i.e., . Without the sparsity prior on , the problem

is ill-posed and has infinitely many solutions. Addi-
tional information that should be sufficiently sparse allows
one to get rid of the ill-posedness. Solving problems involving
sparsity typically requires combinatorial optimization, which is
intractable even for modest data sizes; therefore, a number of re-
laxations have been considered [16]–[19]. We give a brief syn-
opsis of relevant ideas in sparse signal representation in Sec-
tion II.

The application of this methodology to practical array
processing problems requires being able to handle additive
noise, using multiple time or frequency samples from possibly
strongly correlated sources in a sensible fashion, and allowing
the data to be complex:

(1)

The goal of this paper is to explore how to utilize the sparse
signal representation methodology for practical narrowband
and wideband source localization using sensor arrays. The
main contributions of our paper include a new adaptation of
sparse signal representation to source localization through
the development of an approach based on the singular value
decomposition (SVD) to combine multiple samples and the
use of second-order cone programming for optimization of
the resulting objective function. The key ingredients of the
proposed method is the use of SVD for data reduction and the
formulation of a joint multiple-sample sparse representation
problem in the signal subspace domain. In the body of the
paper, we refer to the method as -SVD. In addition, we
introduce the idea of adaptive grid refinement to combat the
effects of a bias introduced by a limitation of the estimates to a
grid. Finally, we discuss a method for the automatic selection
of the regularization parameter involved in our approach, which
balances data-fidelity with sparsity in the -SVD objective.
In our experiments, the proposed approach exhibits a number
of advantages over other source localization techniques, which
include increased resolution, and improved robustness to noise,
to limited number of snapshots, and to correlation of the
sources. In addition, due to the convexity of all the optimization
tasks involved in the approach, it does not require an accurate
initialization. Another advantage of the approach is its flexi-
bility, since few assumptions are made in the formulation, e.g.,
the array does not have to be linear, and the sources may be
strongly correlated. Similarly, extensions to many scenarios,
such as distributed sources and non-Gaussian noise, can be
readily made. In the paper, we mostly focus on the narrow-
band farfield problem with arbitrary array geometry; we also
describe the wideband scenario briefly in Section VIII-D. A
more extensive discussion can be found in [20], where we also
consider beamspace versions, cover wideband and nearfield
processing in more detail, and propose an approach for simul-
taneous self-calibration and source localization in the presence
of model errors.

We start with a brief introduction to the problem of sparse
signal representation in Section II. In Section III, we describe
the source localization problem and represent a single sample
problem directly in the sparse signal representation framework.

In Section IV, we extend the approach to handle multiple sam-
ples. This is done in several steps, leading to the -SVD tech-
nique. In Section V, we describe how to find numerical solutions
via a second-order cone programming (SOC) framework. We
describe how to eliminate the effects of the grid in Section VI
and propose how to automatically choose a regularization pa-
rameter involved in our approach in Section VII. Finally, in Sec-
tion VIII, the advantages and disadvantages of the framework
are explored using simulated experiments, and conclusions are
made in Section IX.

II. SPARSE SIGNAL REPRESENTATION

The simplest version of the sparse representation problem
without noise is to find a sparse , given ,
which are related by , with . The matrix
is known. The assumption of sparsity of is crucial since the
problem is ill-posed without it ( has a nontrivial null-space).
An ideal measure of sparsity is the count of nonzero entries ,
which is denoted by , which we also call the -norm.1

Hence, mathematically, we must look for arg min such that
. This is, however, a difficult combinatorial optimiza-

tion problem and is intractable for even moderately sized prob-
lems. Many approximations have been devised over the years,
including greedy approximations (matching pursuit, stepwise
regression, and their variants [17], [19]), as well as and re-
laxations, where is replaced by , [16], and , for

, [20]. For the latter two, it has been shown recently that
if is “sparse enough” with respect to , then these approxi-
mations in fact lead to exact solutions (see [18], [20]–[24] for
precise definitions of these notions).2 In addition, [26] and [27]
showed that with sufficient sparsity and a favorable structure of
the overcomplete basis, sparse representations are stable in the
presence of noise. These results are practically very significant
since the relaxation subject to is a convex
optimization problem, and the global optimum can be found for
real-valued data by linear programming.3 As these equivalence
results are not specialized to the source localization problem but
are derived for general overcomplete bases, the bounds that they
provide are loose. A result that does take the structure of the
basis into account is developed in [28].

In practice, a noiseless measurement model is rarely appro-
priate; therefore, noise must be introduced. A sparse represen-
tation problem with additive Gaussian noise takes the following
form:

(2)

To extend -penalization to the noisy case, an appropriate
choice of an optimization criterion is subject to

, where is a parameter specifying how

1The symbols kxk and kxk are both used in the literature to represent the
count of nonzero elements. We use the latter symbol since in the limit as p !
0 ; kxk approaches the count of nonzero elements, but, if x 6= 0 kxk !
1.

2Recent studies of greedy methods, which have lower complexity than ` and
` -based methods, have also yielded theoretical results of a similar flavor [25],
[26].

3In addition, for the ` problem, local minima can be readily found by con-
tinuous optimization methods, as described in [20].82
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much noise we wish to allow. An unconstrained form of this
objective is

(3)

This objective function has been used in a number of sparse
signal representation works ([16], [29] for real-valued data and
[30] for complex-valued data). The -term forces the residual

to be small, whereas the -term enforces sparsity of the
representation. The parameter controls the tradeoff between
the sparsity of the spectrum and the residual norm. We use these
ideas in Sections III and IV for source localization.

The optimization criterion is again a convex optimization
problem and can be readily handled by quadratic programming
for real data. We propose the use of SOC programming for
the complex data case. We describe SOC programming in
Section V.

The class of methods called FOCUSS [12] is another par-
adigm for solving sparse signal representation problems with
a more general penalty instead of . However, for ,
the cost function is nonconvex, and the convergence to global
minima is not guaranteed. The discussion in [15] in Section VI
indicates that the best results are obtained for close to 1,
whereas the convergence is also slowest for . The cost per
iteration for FOCUSS methods is similar to that of an interior
point solver for SOC since both solve a modified Newton’s
method step of similar dimensions. However, the number of
iterations of SOC is better behaved (in fact, there are bounds
on the worst-case number of iterations for SOC [31]) than for
FOCUSS with . In our previous work [20], we have
also observed slow convergence of iterative algorithms for
minimization when applied with . By using an SOC
formulation that is tailored to the convex case, we are able
to achieve fast convergence and guarantee global optimality of
the solution.

III. SOURCE LOCALIZATION FRAMEWORK

A. Source Localization Problem

The goal of sensor array source localization is to find the lo-
cations of sources of wavefields that impinge on an array con-
sisting of a number of sensors. The available information is
the geometry of the array, the parameters of the medium where
wavefields propagate, and the measurements on the sensors.

For purposes of exposition, we first focus on the narrow-
band scenario and delay the presentation of wideband source
localization until Section VIII-D. Consider narrowband sig-
nals , arriving at an array of om-
nidirectional sensors, after being corrupted by additive noise

, resulting in sensor outputs . Let
and similarly define and .

After demodulation, the basic narrowband observation model
can be expressed as [1], [2]

(4)

The matrix is the so-called array manifold matrix, whose
th element contains the delay and gain information from

the th source (at location ) to the th sensor. The columns

of , for , are called steering vec-
tors. The number of sources is unknown. To simplify the ex-
position, we only discuss the farfield scenario and confine the
array to a plane, although neither of these assumptions is re-
quired for our approach. With farfield sources in the same plane
as the array, the unknown locations of the sources are parame-
terized by angles (directions of arrival) with respect to the array
axis . Given the knowledge of and the
mapping , the goal is to find the unknown locations
of the sources for all , as well as their number .

B. Overcomplete Representation for a Single Time Sample

Now, we start to formulate the source localization problem as
a sparse representation problem. The single-sample formulation
in this section parallels the one in [12], where it was presented
as one of applications of FOCUSS algorithm. In addition, the
work in [13] and [14] is based on a similar philosophy of trans-
forming a parameter estimation problem into sparse spectrum
estimation, which we discuss later in this section.

We consider the single time sample case in this section, with
in (4). The problem as it appears in (4) is a nonlinear pa-

rameter estimation problem, where the goal is to find . Matrix
depends on the unknown source locations , so it is not

known.
To cast this problem as a sparse representation problem,

we introduce an overcomplete representation in terms of
all possible source locations. Let be a sam-
pling grid of all source locations of interest. The number of
potential source locations will typically be much greater
than the number of sources or even the number of sensors

. We construct a matrix composed of steering vectors cor-
responding to each potential source location as its columns:

. In this framework is known
and does not depend on the actual source locations .

We represent the signal field by an vector , where
the th element is nonzero and equal to if source
comes from for some and zero otherwise. For a single time
sample, the problem is reduced to

(5)

In effect, this overcomplete representation allows us to
exchange the problem of parameter estimation of for the
problem of sparse spectrum estimation of . As in numerous
nonparametric source localization techniques, the approach
forms an estimate of the signal energy as a function of hypoth-
esized source location, which ideally contains dominant peaks
at the true source locations. The central assumption is that the
sources can be viewed as point sources, and their number is
small. With this assumption, the underlying spatial spectrum
is sparse (i.e., has only a few nonzero elements), and we can
solve this inverse problem via regularizing it to favor sparse
signal fields using the methodology, as described in Sec-
tion II. The appropriate objective function for the problem is

(6)

We discuss how is chosen in Section VII, but for now, we as-
sume that a good choice can be made. The data for the model83
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Fig. 1. Single sample source localization with ` . Spatial spectra of two
sources with DOAs of 60 and 70 (SNR = 20 dB).

is complex-valued; hence, neither linear nor quadratic program-
ming can be used for numerical optimization. Instead, we adopt
an SOC programming framework, which we introduce in Sec-
tion V. Once is found, the estimates of the source locations
correspond to the locations of the peaks in .

We illustrate the approach for source localization with a
single time sample in Fig. 1. We consider a uniform linear
array of sensors separated by half a wavelength of the
actual narrowband source signals. We consider two narrowband
signals in the far-field impinging on this array from directiions
of arrival (DOAs) 60 and 70 , which are closer together than
the Rayleigh limit. The SNR is 20 dB. The regularization
parameter in this example is chosen by subjective assess-
ment. We do not consider other source localization methods
such as MUSIC or Capon’s method in this simulation because
they rely on estimating the covariance matrix of the sensor
measurements, but in the simulation only, one time sample is
present. Using beamforming, the two peaks of the spectrum
are merged, but using the sparse regularization approach, they
are well resolved, and the sidelobes are suppressed almost to
zero. Apart from a small asymptotic bias, which we discuss
in Section VIII, the spectrum estimate is an example of what
super-resolution source localization methods aim to achieve.

The work of Fuchs [13], [14] is based on a similar philosophy
of transforming a parameter estimation problem into a sparse
spectrum estimation problem. A basis composed of beamformer
outputs to isolated unit power sources from a large number of
directions is created first. The method then attempts to represent
the vector of beamformer outputs corresponding to the unknown
sources as a sparse linear combination of vectors from the basis,
using penalties for sparsity, penalties for noise, and opti-
mization by quadratic programming. However, this beamspace
domain formulation combines the multiple snapshots in a way
that requires assumptions that the sources are uncorrelated and
that a large number of samples is available. In contrast, the
sensor-domain method that we propose in Section IV-C treats
the multiple time samples in a very different way: We sum-
marize multiple snapshots by using the SVD and solve a joint
optimization problem over several singular vectors, imposing

a penalty that enforces the same sparsity profile over all these
vectors, thus imposing temporal coherence. The resulting for-
mulation is considerably more general than the one in [14].

IV. SOURCE LOCALIZATION WITH MULTIPLE

TIME SAMPLES AND -SVD

Single snapshot processing may have its own applications,
but source localization with multiple snapshots4 from poten-
tially correlated sources is of greater practical importance.
When we bring time into the picture, the overcomplete repre-
sentation is easily extended. The general narrowband source
localization problem with multiple snapshots reformulated
using an overcomplete representation has the following form:

(7)

However, the numerical solution of this problem is a bit more
involved than that of the single sample case. In Section IV-A,
we describe a simple and computationally efficient method that,
however, does not use the snapshots in synergy. In Section IV-B,
we propose a coherent method that does use the snapshots in
synergy but is more demanding computationally, and in Sec-
tion IV-C, we develop an SVD-based approach that dramati-
cally reduces the computational complexity while still using the
snapshots coherently.

A. Treating Each Time Index Separately

The first thought that comes to mind when we switch from
one time sample to several time samples is to solve each problem
indexed by separately. In that case, we would have a set of
solutions . If the sources are moving fast, then the evolution
of is of interest, and the approach is suitable for displaying
it. However, when the sources are stationary over several time
samples, then it is preferable to combine the independent esti-
mates to get one representative estimate of source locations
from them, for example, by averaging or by clustering. This is
noncoherent averaging, and its main attraction is its simplicity.
However, by turning to fully coherent combined processing, as
described in the following sections, we expect to achieve greater
accuracy and robustness to noise.

B. Joint-Time Inverse Problem

Now, we consider a simple approach that uses different time
samples in synergy. Let , and define
and similarly. Then, (7) becomes

(8)

There is an important difference of (8) from (5): Matrix is
parameterized temporally and spatially, but sparsity only has to
be enforced in space since the signal in not generally sparse
in time. To accommodate this issue, we impose a different prior:
one that requires sparsity in the spatial dimension but does not
require sparsity in time. This can be done5 by first computing the

-norm of all time-samples of a particular spatial index of ,

4While here we focus on multiple time snapshots, we will also use the same
ideas applied to frequency snapshots for wideband source localization in Sec-
tion VIII.

5It came to our attention that a similar idea has been used in [30] for basis
selection.84
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i.e., , and penalizing the
-norm of . The cost function becomes

(9)

The Frobenius norm is defined as
vec . The optimization is performed over

is a function of . The time samples are combined using the
2-norm, which has no sparsifying effects. The spatial samples
are combined using the -norm, which does enforce sparsity.
Compared to the independent sample by sample processing
from Section IV-A, the different time-indices of reinforce
each other, since the penalty is higher if the supports of
for different do not line up exactly. Once an estimate of is
computed using the new cost function, the peaks of provide
the source locations.

The main drawback of this technique is its computational
cost. The size of the inverse problem increases linearly with

, and the computational effort required to solve it increases
superlinearly with . Thus, when is large, this approach is
not viable for the solution of the real-time source localization
problem. We propose a solution to this problem next.

C. -SVD

In this section, we present a tractable approach to use a large
number of time samples coherently, thus extending the use of
sparse signal representation ideas for practical source localiza-
tion problems. To reduce both the computational complexity
and the sensitivity to noise, we use the SVD of the data
matrix . The idea is to decompose the
data matrix into the signal and noise subspaces, keep the signal
subspace, and mold the problem with reduced dimensions into
the multiple-sample sparse spectrum estimation problem in the
form of Section IV-B. Note that we keep the signal subspace and
not the noise subspace, which gets used in MUSIC, Pisarenko,
and the minimum norm subspace methods.

Without noise on the sensors, the set of vectors
would lie in a -dimensional subspace, where is the number
of sources.6 We would only need to keep a basis for the subspace
( vectors instead of ) to estimate what sparse combinations
of columns of form it. With additive noise, we decompose the
data matrix into its signal and noise subspaces and keep a basis
for the signal subspace. Mathematically, this translates into the
following representation. Take the SVD7

(10)

Keep a reduced dimensional matrix , which con-
tains most of the signal power ,
where . Here, is a identity matrix, and
is a matrix of zeros. In addition, let ,
and , to obtain

(11)

6If T < K , or if the sources are coherent, we use the number of signal
subspace singular values instead of K .

7This is closely related to the eigen-decomposition of the correla-
tion matrix of the data: R = 1=TYY . Its eigen-decomposition is
R = 1=TULV VL U = 1=TUL U .

Fig. 2. Block diagram of steps for ` -SVD.

Now, let us consider this equation column by column (each
column corresponds to a signal subspace singular vector):

(12)

This is now in exactly the same form as the original multiple
time sample problem (7), except that instead of indexing sam-
ples by time, we index them by the singular vector number.
What we have achieved by bringing the SVD transformation
into the picture is the reduction of the size of the problem in Sec-
tion IV-B from blocks of data to , where is the number
of sources. For typical situations where the number of sources
is small and the number of time samples may be in the order of
hundreds, this reduction in complexity is very substantial.

If we think of as a two-dimensional (2-D) field, indexed
by in the spatial dimension, and by in terms of the singular
vector index, then we again want to impose sparsity in
only spatially (in terms of ) and not in terms of the singular
vector index . Similarly to Section IV-B, we define

. The sparsity of the resulting

vector corresponds to the sparsity of the spatial spectrum.
We can find the spatial spectrum of by minimizing

(13)

We illustrate the steps for the -SVD method in Fig. 2.
Note that our formulation uses information about the number

of sources . However, we empirically observe that incorrect
determination of the number of sources in our framework has no
catastrophic consequences (such as complete disappearance of
some of the sources as may happen with MUSIC) since we are
not relying on the structural assumptions of the orthogonality
of the signal and noise subspaces. Underestimating or overes-
timating manifests itself only in gradual degradation of per-
formance. This is illustrated in Section VIII.

V. SOC REPRESENTATION OF THE -SVD PROBLEM

Now that we have an objective function in (13) to minimize,
we would like to do so in an efficient manner. The objective

contains a term , which
is neither linear nor quadratic. We turn to SOC programming
[32], which deals with the so-called SOC constraints of the form

, i.e., . SOC
programming is a suitable framework for optimizing functions85
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that contain SOC, convex quadratic, and linear terms. The main
reason for considering SOC programming instead of generic
nonlinear optimization for our problem is the availability of ef-
ficient interior point algorithms for the numerical solution of the
former, e.g., [33]. In addition to efficient numerical solution,
SOC programming has a substantial theoretical foundation as
a special case of semidefinite programming and convex conic
programming. See [32] for details; we describe in the Appendix
how to manipulate the problem in (13) into the SOC program-
ming form:

subject to and

where for

and for (14)

For the numerical solution of our SOC problem, we use a
package for optimization over self-dual homogeneous cones
(which includes direct products of the positive orthant-con-
straints, SOC constraints, and semidefinite cone constraints),
called SeDuMi [33]. In terms of computational complexity, the
interior point method relies on iterations of modified Newton’s
method. One of the main attractions of interior point methods
is that the number of these iterations typically stays quite
low, independent of the size of the problem. For optimizing
the -SVD objective function in SOCP framework using an
interior point implementation, the cost8 is
with the observation that the number of iterations is empir-
ically almost independent of the size of the problem [31] (a
theoretical worst-case bound on the number of iterations is

[31]). The computational complexity is higher
than that of [14] since we have a joint optimization problem
over singular vectors, leading to an additional factor of

. It is also higher than the cost of MUSIC, where the main
complexity is in the subspace decomposition of the covariance
matrix, which is . However, the benefit that we get in
return is generality. For reference, for a problem with three
sources impinging upon an array with eight sensors and having
1 sampling of the spatial location of the sources (180 points
on the grid), the time required for optimization using a Matlab
implementation of the code on Linux on a computer with an
800-MHz Pentium 3 processor is roughly 5 sec, with around
20 iterations.

VI. MULTIRESOLUTION GRID REFINEMENT

Thus far, in our framework, the estimates of the source lo-
cations are confined to a grid. We cannot make the grid very
fine uniformly since this would increase the computational com-
plexity significantly. We explore the idea of adaptively refining
the grid in order to achieve better precision. The idea is a very
natural one: Instead of having a universally fine grid, we make
the grid fine only around the regions where sources are present.
This requires an approximate knowledge of the locations of the

8We assume thatM � N .

Fig. 3. Illustration of grid refinement.

sources, which can be obtained by using a coarse grid first. The
algorithm is as follows.

1) Create a rough grid of potential source locations , for
. Set . The grid should not be too

rough in order to not introduce substantial bias. A 1 or
2 uniform sampling usually suffices.

2) Form , where .
Use our method from Section IV-C to get the estimates of
the source locations , and set .

3) Get a refined grid around the locations of the peaks,
. We specify how this is done below.

4) Return to step 2 until the grid is fine enough.
Many different ways to refine the grid can be imagined; we

choose simple equispaced grid refinement. Suppose we have
a locally uniform grid (piecewise uniform), and at step , the
spacing of the grid is . We pick an interval around the th peak
of the spectrum, which includes two grid spacings to either side,
i.e., , for . In the intervals
around the peaks, we select the new grid whose spacing is a frac-
tion of the old one . It is possible to achieve fine
grids either by rapidly shrinking for a few refinement levels
or by shrinking it slowly using more refinement levels. We find
that the latter approach is more stable numerically; therefore, we
typically set . After a few (e.g., 5) iterations of refining
the grid, it becomes fine enough that its effects are negligible.
Fig. 3 illustrates the refinement of the grid. The spacing of each
of the grids corresponds to . The idea has been successfully
used for some of the experimental analysis we present in Sec-
tion VIII.

VII. REGULARIZATION PARAMETER SELECTION

An important part of our source localization framework is the
choice of the regularization parameter in (13), which balances
the fit of the solution to the data versus the sparsity prior. The
same question arises in many practical inverse problems and
is difficult to answer in many cases, especially if the objective
function is not quadratic. We discuss an approach to select the
regularization parameter automatically for the case where some86
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statistics of the noise are known or can be estimated. Let us
denote the estimate of the spatial spectrum obtained using as
the regularization parameter by . A well-known idea under
the name of discrepancy principle [34] is to select to match
the residuals of the solution to some known statistics of the
noise when such are available. For example, if the distribution of
the noise is known or can be modeled, then one can select

such that . Here, the we use the
Frobenius norm vec . Directly searching for a
value of to achieve the equality is rather difficult and requires
solving the problem (13) multiple times for different s.

Instead, we propose to look at the constrained version of the
problem in (13), which can also be efficiently solved in the SOC
framework [20]:

subject to (15)

The problem in (15) is equivalent via Lagrange multipliers to
the one in (13) for some parameter , which is related to .
For the problem in (15), the task of choosing the regulariza-
tion parameter properly is considerably more transparent: We
choose high enough so that the probability that is
small, where vec . If is independent and iden-
tically distributed (i.i.d.) Gaussian, then for moderate to high
SNR, has approximately a distribution with de-
grees of freedom upon normalization by the variance of . The
reason that this holds only approximately is that the SVD in
(10) depends on the particular re-
alization of noise, and hence, the matrix is a function of .
However, when noise is small, the term dominates the SVD,
and the change due to the addition of is small, and we arrive
at a distribution for . With the knowledge of the dis-
tribution, we can find a confidence interval for and use
its upper value as a choice for . In simulations we present in
Section VIII, we find that this procedure generates appropriate
regularization parameter choices for our problem when noise
is reasonably small. We also present some thoughts on how to
extend the range of the applicability of the procedure to higher
levels of noise by characterizing the distribution of for lower
SNR.

When noise statistics are not known, and no knowledge of the
number of sources is available, the choice of the regularization
parameter is a difficult question. It has been approached in the
inverse problem community by methods such as L-curve [35].
An attempt to apply the L-curve to a subset selection problem
in noise has been made in [36], but the authors have to make an
assumption that the SNR is approximately known. The choice
of the regularization parameter when no knowledge of the noise
or of the sources is available is still an open problem.

VIII. EXPERIMENTAL RESULTS

In this section, we present several experimental results for
our -SVD source localization scheme. First, we compare the
spectra of -SVD to those of MUSIC [3], beamforming [2],
Capon’s method [4], and the beamspace method in [14] under
various conditions. Next, we discuss and present results on
regularization parameter selection. Then, we analyze empiri-
cally the bias and variance properties of our method. Finally, in
Section VIII-D, we present an extension of our framework to

Fig. 4. (a) and (b). Spatial spectra for beamforming, Capon’s method, MUSIC,
and the proposed method (` -SVD) for uncorrelated sources. DOAs: 62 and
67 . Top: SNR = 10 dB. Bottom: SNR = 0 dB.

the wideband scenario and demonstrate its effectiveness on a
number of examples.

A. Spectra for -SVD

We consider a uniform linear array of sensors sepa-
rated by half a wavelength of the actual narrowband source sig-
nals. Two zero-mean narrowband signals in the far-field impinge
on this array from distinct DOAs. The total number of snapshots
is , and the grid is uniform with 1 sampling .
In Fig. 4, we compare the spectrum obtained using our pro-
posed method with those of beamforming, Capon’s method, and
MUSIC. In the top plot, the SNR is 10 dB, and the sources are
closely spaced (5 separation). Our technique and MUSIC are
able to resolve the two sources, whereas Capon’s method and
beamforming methods merge the two peaks. In the bottom plot,
we decrease the SNR to 0 dB, and only our technique is still
able to resolve the two sources. Next, we consider correlation
between the sources, which can occur in practical array pro-
cessing due to multipath effects. In Fig. 5, we set the SNR to 2087
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Fig. 5. Spectra for correlated sources. SNR = 20 dB. DOAs: 63 and 73 .

Fig. 6. Comparison with beamspace technique of [14]. SNR = 20 dB.
DOAs: 63 and 73 . Top: Uncorrelated sources. Bottom: Correlated sources;
correlation coefficient is 0.99.

dB but make the sources strongly correlated, with a correlation
coefficient of 0.99. MUSIC and Capon’s method would resolve
the sources at this SNR were they not correlated, but correla-
tion degrades their performance. Again, only our technique is
able to resolve the two sources. This illustrates the power of our
methodology in resolving closely spaced sources despite low
SNR or correlation between the sources.

In Fig. 6, we compare the spectra obtained using -SVD to
spectra obtained using our implementation of the beamspace
technique described in [14]. The top plot considers two uncor-
related sources at 63 and 73 , with samples. SNR is
0 dB. As can be seen from the plot, for uncorrelated sources
with , the assumptions made in [14] hold, and the
beamspace method has an excellent performance, similar to that
of our -SVD method.

In the bottom plot, the two sources are correlated, breaking
the assumption in [14]. We observe that the performance of
the beamspace technique degrades and that strong bias appears.
This bias was not present when the sources were uncorrelated.
As we already noted, no such degradation appears for -SVD,

Fig. 7. Resolving M � 1 sources: M = 8 sensors, seven sources, SNR =

10 dB.

and the spectrum is very similar to the one for the case of uncor-
related sources. In summary, our formulation is based on similar
principles of enforcing sparsity as the work in [14], but it is more
general in allowing correlated sources and making no assump-
tions of having a large number of time samples.

Thus far, we have shown plots resolving a small number of
sources. An interesting question is to characterize the maximum
number of sources that can be resolved by -SVD using mea-
surements from an -sensor array. It can be shown through
simple linear algebraic arguments that sources cannot be
localized (the representation is ambiguous). However, empiri-
cally, the -SVD technique can resolve sources9 if they
are not located too close together. Hence, -SVD is not limited
to extremely sparse spectra but can resolve the same number of
sources as MUSIC and Capon’s methods. This is illustrated in
Fig. 7. The number of sensors in the array is again ,
and the number of sources is 7. With moderate SNR as in this
example, all three techniques ( -SVD, MUSIC, and Capon’s
method) exhibit peaks at the source locations.

We mentioned in Section IV-C that our approach is not very
sensitive to the correct determination of the number of sources.
We give an illustration of this statement in Figs. 8 and 9. We
use the same sensor uniform linear array as before. The
actual number of sources is , and the SNR is 10 dB. In
Fig. 8, we plot unnormalized (i.e., the maximum peak is not set
to 1) spectra obtained using MUSIC when we vary the assumed
number of sources. Underestimating the number of sources re-
sults in a strong deterioration of the quality of the spectra, in-
cluding widening and possible disappearance of some of the
peaks. A large overestimate of the number of sources leads to
the appearance of spurious peaks due to noise. In Fig. 9, we plot
the unnormalized spectra obtained using -SVD for the same
assumed numbers of sources, and the variation in the spectra is

9This holds under the assumption that the number of singular vectors used in
` -SVD is sufficient, e.g., equal to the number of sources. When fewer singular
vectors are taken than the number of sources, the number of resolvable sources
may decrease. However, even in the extreme case of taking just one singular
vector, for the eight-sensor array in the example in Fig. 9, ` -SVD resolves 4
(i.e., M=2) sources.88
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Fig. 8. Sensitivity of MUSIC to the assumed number of sources. The correct
number is 4.

Fig. 9. Sensitivity of ` -SVD to the assumed number of sources. The correct
number is 4.

very small. The importance of the low sensitivity of our tech-
nique to the assumed number of sources is twofold. First, the
number of sources is usually unknown, and low sensitivity pro-
vides robustness against mistakes in estimating the number of
sources. In addition, even if the number of sources is known,
low sensitivity may allow one to reduce the computational com-
plexity of -SVD by taking a smaller number of singular vec-
tors. With higher levels of noise, in our experiments, we observe
that the sensitivity of -SVD to the assumed number of sources
increases; however, it still provides better robustness relative to
MUSIC, especially when the assumed number of sources is less
than the actual number of sources.

B. Regularization Parameter Choice

We illustrate the importance of a good choice of the regu-
larization parameter in Fig. 10. The number of sources in the
example is , and the number of sensors and snapshots is
kept as before and . The curve labeled “good

Fig. 10. Regularization parameter choice: Discrepancy principle leads to a
useful spectrum. Setting the regularization parameter too low produces spurious
peaks in the spectrum.

choice” represents the selection of the regularization parameter
by the discrepancy principle from Section VII, with a 99%

confidence interval. The spectrum is sharp, and the peaks cor-
respond to source locations. For the second curve labeled “bad
choice,” the regularization parameter was set three times lower:
below the norm of the realization of the noise. In order to ex-
plain the data with such a small regularization parameter, spu-
rious peaks due to noise appear in the plot. In addition, if we set
the regularization parameter too high, starting from about five
times the value selected by the discrepancy principle one of the
peaks would disappear, and as we increase it further, the second
peak would disappear, making the spectrum 0 at all spatial lo-
cations. This example illustrates two points: the importance of a
good choice of the regularization parameter and the soundness
of the approach based on the discrepancy principle.

In Section VII, in order to calculate the confidence inter-
vals for , we had to make an assumption that noise is rea-
sonably small. When the assumption does not hold, the SVD

depends on , and
is a complicated function of since now depends on .
One approach to characterize for higher levels of noise is
through simulation. In Fig. 11, we illustrate the dependence of
the ratio of on SNR, where is the variance of the i.i.d.
Gaussian noise . To create the plot, we first selected
source locations uniformly distributed in ,
and a corresponding signal matrix , with indices of nonzero
rows corresponding to . For each choice of , we created 250
instances of zero-mean i.i.d. Gaussian noise matrices with
variance and calculated the minimum, average, and max-
imum ratios over all 250 instances of . The three
curves (max, min, and average ratio) are plotted as a function
of SNR. We superimposed these curves for ten different real-
izations of to show the variability. For very low SNR, noise
is dominating and ,
where are the top singular values. For high SNR,
noise has a small contribution to , and can be well pre-
dicted as described in Section VII. However, there is a sharp89
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Fig. 11. Regularization parameter choice for moderate noise: Ratio of k~nk
to � as a function of SNR.

transition between these two regions, which we are interested in
characterizing. For most triples of curves, the transition occurs
at the same SNR, but there are two outliers. They occur when
source locations are closely spaced so that has a high
condition number (recall that contains columns of cor-
responding to ). In that case, the effects of noise start to show
up at higher SNR. The conclusion that can be drawn out of these
experiments is that it is possible to predict for higher levels
of noise, but one has to be careful with closely spaced sources.

C. Bias and Variance

One aspect of our technique is the bias of the estimates that
appears for closely spaced sources. The reason for the bias
is that we impose a sparsity prior in our objective function,
without which the problem of estimating the spectrum is
ill-posed. Other source localization methods have much diffi-
culty resolving closely spaced sources, especially at low SNRs;
hence, small bias can be considered as a good compromise, if
such peaks can be resolved. We now investigate bias10 more
closely by considering source localization with two sources and
varying the angular separation between them. The number of
sensors and snapshots is again and . In Fig. 12,
we plot the bias of each of the two source location estimates
as a function of the angular separation when one source is held
fixed at 42 . The SNR is 10 dB. The values on each curve are
an average over 50 trials. The plot shows the presence of bias
for low separations, but the bias disappears when sources are
more than about 20 apart.

We next compare the variance of the DOA estimates pro-
duced by our approach to those obtained using existing methods
[1] and to the CRB. In order to satisfy the assumptions of the
CRB, we choose an operating point where our method is un-
biased, i.e., when the sources are not very close together. In
Fig. 13, we present plots of variance versus SNR for a scenario

10Our analysis of bias and variance is based on computer simulations. The
work in [29] contains a theoretical analysis of bias and variance in a limited
scenario for one time sample and for a single source.

Fig. 12. Bias of ` -SVD in localizing two sources as a function of separation
between the two sources SNR = 10 dB.

Fig. 13. CRB for zero mean uncorrelated sources. Comparison with variances
of ESPRIT, Root-MUSIC, ML, and ` -SVD. DOAs: 42.83 and 73.33 .

including two uncorrelated sources.11 On the plot, we also in-
clude a curve labeled “oracle” maximum likelihood, which is
obtained by using an ML estimate, where the nonconvex opti-
mization is initialized to the true values of the source locations.
This estimator is not practically realizable and intuitively serves
as an effective bound for performance in the threshold region,
where the CRB is rather loose. Each point in the plot is the av-
erage of 50 trials. It can be seen that for well-separated sources,
the variance of -SVD estimates follows closely that of other
estimators and, except for very low SNR, meets the CRB. As we
have illustrated in Fig. 4, closely spaced sources can be resolved
at lower SNR with our technique than is possible with other
methods. This occurs in a region where our method is biased. On
the other hand, Fig. 13 shows that when the sources are well-sep-
arated, and our method is unbiased, its performance is as good as

11To obtain this plot, we have used the adaptive grid refinement approach
from Section VI to get point estimates not limited to a coarse grid.90
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Fig. 14. Plots of variances of DOA estimates versus SNR, as well as the CRB,
for two correlated sources. DOAs: 42.83 and 73.33 . Variance for the source
at 42.83 shown.

those of existing super-resolution methods. Another important
advantage can be seen in Fig. 14 for correlated sources, which
commonly occur in practice due to multipath effects. The corre-
lation coefficient is 0.99. Our approach follows the CRB more
closely than the other methods, and the threshold region occurs
at lower SNR. The proposed -SVD method is the closest one
in performance to the intuitive bound provided by the oracle-ML
curve. This shows the robustness of our method to correlated
sources.

D. Wideband Source Localization

The main difficulty that arises when wideband signals are
considered is the impossibility to represent the delays by simple
phase shifts. A way to deal with this issue is to separate the
signal spectrum into several narrowband regions, each of which
yields to narrowband processing. To work in the frequency do-
main, the time-samples are grouped into several “snapshots,”
and transformed into the frequency domain:

(16)

For each frequency , we have snapshots. We are in
general interested in a 2-D power spectrum as a function of
both spatial location (DOA) and frequency ; therefore, we
solve the problem at each frequency independently, using the

-SVD method, with frequency snapshots replacing temporal
snapshots.

In Fig. 15, we present an example using the same eight-ele-
ment uniform linear array as the one used throughout the paper,
but the signals are now wideband. We consider three chirps with
DOAs 70 , 98 , and 120 with frequency span from 250 to
500 Hz, and time samples. Using conventional beam-
forming, the spatio-frequency spectra of the chirps are merged
and cannot be easily separated [plot (a)], especially in lower fre-
quency ranges, whereas using -SVD [plot (b)], they can be
easily distinguished throughout their support. This shows that
the -SVD methodology is useful for wideband scenarios as
well.

Fig. 15. (a) and (b). Wideband example: Three chirps. DOAs: 70 , 98 ,
and 120 . Frequencies are processed independently. Top: Conventional
beamforming. Bottom: ` -SVD processing.

The approach that we just described treats each frequency in-
dependently. In [20], we outline an alternative version of wide-
band source localization for joint “coherent” processing of the
data at all frequencies. Wideband adaptations of current source
localization methods, based on ideas such as focusing matrices
[37], can do coherent processing over a narrow frequency region
but have difficulty with wider frequency regions, whereas our
approach does not have such limitations. Furthermore, an im-
portant benefit that comes with our coherent wideband source
localization approach is the ability to incorporate prior infor-
mation on the frequency spectra of the sources. For example, in
Fig. 15, where we performed incoherent processing, the spectra
of the chirps have a jagged shape, due to the fact that we treat
each frequency independently. To mitigate this artifact, in the
coherent version of wideband processing, one could incorpo-
rate a prior on the continuity of the frequency spectra of the
chirps. Another scenario where prior information on frequency
could be particularly useful is for sources composed of multiple
harmonics. In that case, a sparsity prior can be imposed on the
frequency spectrum as well as on the spatial one. In Fig. 16,91
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Fig. 16. Joint coherent processing of multiple harmonics with sparsity
penalties on the spectra in the spatial and in frequency domain. Top: ` -SVD.
Middle: Incoherent beamforming. Bottom: Incoherent MUSIC.

we look at three wideband signals consisting of one or two har-
monics each. At DOA 76 , there are two harmonics with fre-
quencies 200 and 520 Hz, at DOA 112 , there are again two har-
monics with frequencies 200 and 400 Hz, and at DOA 84 , there
is a single harmonic with frequency 520 Hz. Plot (a) shows re-
sults using conventional beamforming applied at each frequency
(incoherently), plot (b) uses the MUSIC method applied at each
frequency (incoherently), and plot (c) uses the coherent wide-
band version of -SVD. The results are displayed as intensity
maps on a 2-D grid as a function of angle and frequency. Con-
ventional beamforming merges the two well-separated peaks at
200 Hz, as well as the two closely spaced peaks at 520 Hz.
MUSIC resolves the two peaks at frequency 200 Hz but merges
the two at 520 Hz and shows some distortion due to noise. The
coherent wideband version of -SVD resolves all five peaks
and does not have any notable distortion due to noise.

IX. CONCLUSION

In this paper, we explored a formulation of the sensor array
source localization problem in a sparse signal representation
framework. We started with a scheme for source localization
with a single snapshot and developed a tractable subspace-based

-SVD method for multiple snapshots. The scheme can be ap-
plied to narrowband and to wideband scenarios. An efficient op-
timization procedure using SOC programming was proposed.
We described how to mitigate the effects of the limitation of the
estimates to a grid through an adaptive grid-refinement proce-
dure and proposed an automatic method for choosing the regu-
larization parameter using the constrained form of the discrep-
ancy principle at high SNR. Finally, we examined various as-
pects of our approach, such as bias, variance, and the number of
resolvable sources, using simulations. Several advantages over
existing source localization methods were identified, including
increased resolution, no need for accurate initialization, and im-
proved robustness to noise, to a limited number of time samples
and to correlation of the sources.

Some of the interesting questions for further research include
an investigation of the applicability of greedy sparse signal rep-
resentation methods, which have a lower computational cost,
to source localization; a theoretical study of the bias and vari-
ance of our scheme; a detailed theoretical study of uniqueness
and stability of sparse signal representation for the overcomplete
bases that arise in source localization applications; a theoretical
analysis of the multiple time-sample sparse signal representa-
tion problem; and applications of enforcing sparsity to spatially
distributed or slowly time-varying sources.

APPENDIX

FORMULATING -SVD AS A SOC OPTIMIZATION PROBLEM

The general form of an SOC problem is

such that and

where . Here, is the -dimensional
positive orthant cone, and are SOCs.

First, to make our objective function in (13) linear, we use
the auxiliary variables and and put the nonlinearity into the
constraints by rewriting (13) as

subject to and (17)

The vector is composed of non-negative real values; hence,
. The symbol stands for

an vector of ones. The constraint can

be rewritten as , for ,
and , where . In addition, let

. Then, we have

subject to and

where for (18)

The optimization problem in (18) is in the SOC programming
form: We have a linear objective function and a set of quadratic,
linear, and SOC constraints. Quadratic constraints can be readily
represented in terms of SOC constraints; see [32] for details.
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Abstract. We propose a method for feature-preserving regularized re-
construction in coherent imaging systems. In our framework, image for-
mation from measured data is achieved through the minimization of a
cost functional, designed to suppress noise artifacts while preserving
features such as object boundaries in the reconstruction. The cost func-
tional includes nonquadratic regularizing constraints. Our formulation ef-
fectively deals with the complex-valued and potentially random-phase
nature of the scattered field, which is inherent in many coherent systems.
We solve the challenging optimization problems posed in our framework
by developing and using an extension of half-quadratic regularization
methods. We present experimental results from three coherent imaging
applications: digital holography, synthetic aperture radar, and ultrasound
imaging. The proposed technique produces images where coherent
speckle artifacts are effectively suppressed, and important features of
the underlying scenes are preserved. © 2006 Society of Photo-Optical Instrumen-
tation Engineers. �DOI: 10.1117/1.2150368�
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1 Introduction

This paper addresses image reconstruction problems in co-
herent imaging. Coherent imaging is based on recording
spatial and/or temporal variations in both the intensity of a
scattered field and its phase.1 Many microwave, optical,
and acoustic sensing applications use coherent imaging,
and particular modalities include synthetic-aperture radar
�SAR�, holography, sonar, ultrasound, and laser imaging,
among others. In both coherent and incoherent imaging
tasks, reconstruction of an image from observed data is
often an ill-posed inverse problem. Solution of such inverse
problems can be achieved through regularization methods,
which turn the problem into a well-posed one and prevent
the amplification of measurement noise during the recon-
struction process. However, one limitation of straightfor-
ward regularization methods, such as Tikhonov
regularization,2 is the suppression of important features in
the resulting imagery, such as edges. Recently this issue has
been successfully addressed by feature-preserving regular-
ization techniques in incoherent imaging applications, such
as restoration of blurred and noisy optical images3 and re-
construction in x-ray tomography.4

Coherent image reconstruction poses additional chal-
lenges that do not appear in incoherent imaging. First, the
signals involved are in general complex-valued. Further-
more, in many problems, including SAR and holography of
diffuse objects, the phase of the scattered field is a highly
0091-3286/2006/$22.00 © 2006 SPIE r
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andom quantity.* This leads to two complications. First,
ue to constructive and destructive interference of scatter-
rs within a resolution cell, conventional coherent images
uffer from speckle artifacts. �Speckle appears when the
urface being imaged has roughness at the scale of the il-
uminating wavelength.� Second, due to the complex-
alued and possibly random-phase nature of the fields,
traightforward application of image reconstruction meth-
ds originally designed for incoherent imaging may not
roduce accurate reconstructions, as we experimentally
emonstrate in Sec. 3.

To address these challenges, we propose a feature-
reserving regularization method specifically for coherent
maging tasks. The approach we present involves the mini-
ization of a cost functional that contains nonquadratic

egularization constraints. Such nonquadratic constraints
ave been shown to lead to feature preservation by prefer-
ing reconstructions that are sparse in terms of the features
f interest.6 Our framework is general enough to handle
arious features �as we demonstrate later�, but for the sake
f concreteness at this point, let us assume that the features
f interest are the boundaries between distinct physically
eaningful regions in the scene. The goal then is to recon-

truct images where various imaging artifacts and noise are
uppressed, while object and region boundaries �edges� are

This property is known to enable high-quality reconstructions from lim-
ted Fourier-offset data in coherent imaging.5 For this reason, Fourier
ransform holograms are often constructed using a diffuser to impart
ssentially random phase to each point in the original scene before

ecording.

January 2006/Vol. 45�1�
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Çetin, Karl, and Willsky: Feature-preserving regularization method…
preserved. The regularization constraints in our framework
achieve artifact suppression by imposing smoothness on the
magnitudes of the reconstructed complex-valued field re-
flectivities �or transmission coefficients�. The nonquadratic
aspect of these regularizing functionals leads to edge pres-
ervation, similar to the case in incoherent imaging
problems.3,4 To solve the resulting optimization problems,
we provide a formal extension of half-quadratic regulariza-
tion techniques7 to complex-valued, random-phase fields.
This constitutes the major technical contribution of our
work.

There are a number of publications that are related to
some of the coherent-imaging issues that we address. The
implications of the random-phase nature of coherent im-
ages in terms of the quality of the reconstructions has been
analyzed in Refs. 5 and 8. The work in Ref. 9 presents a
maximum likelihood technique for reconstructing complex-
valued, random-phase images from Fourier-offset data us-
ing the expectation-maximization algorithm. Bayesian tech-
niques have been used for filtering complex-valued,
speckled images in Ref. 10, and for ultrasound Doppler
spectral analysis based on autoregressive models in Ref. 11.
A technique for image reconstruction from noisy digital
holograms based on the method of projection onto convex
sets �POCS� has been developed in Ref. 12. These last three
papers are somewhat related to our approach in that they
use regularizing constraints. A number of more recent pub-
lications have a closer relation to our perspective for coher-
ent imaging, in particular in their emphasis on preservation
of edges or other features. A Bayesian approach for the
nonlinear inverse scattering problem of tomographic imag-
ing using microwave or ultrasound probing has been pro-
posed in Ref. 13. In Refs. 14 and 15, maximum-entropy
regularization has been used for image reconstruction from
sparsely sampled coherent field data. The work in Ref. 16
proposes a regularized autoregressive model for spectral
estimation, with application to medical ultrasonic radio-
frequency images. Another method for spectral estimation
involves regularization through a circular Gibbs-Markov
model.17 A statistical deconvolution technique for diffuse
ultrasound scattering has been proposed in Ref. 18, where
sampling techniques are used for inference. In Ref. 19, an-
isotropic diffusion20 has been used for ultrasound speckle
reduction and coherence enhancement. The total variation-
based regularization method proposed in Ref. 21 has been
applied to coherent imaging, in particular to near-field
acoustic holography. Finally, in Ref. 22, a penalized-
likelihood image reconstruction technique has been pro-
posed for image-plane holography, which uses incoherent
illumination.

Our approach is significantly different from this body of
previous work in a number of ways. First, we consider the
random-phase aspect �and deal with the effects of speckle�
much more explicitly than any of the previous papers on
inverse problems in coherent imaging. Second, the struc-
tures of the energy functionals used in our framework are
quite different from what has been used in previous work,
and this structure allows the use of a variety of regularizing
constraints within a single framework. Third, the algorithm
we use for optimization, namely an extension of half-
quadratic regularization, is new. We demonstrate the perfor-

mance of the proposed method on examples from a number l

Optical Engineering 017003-2
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f coherent imaging applications. With enhanced speckle
nd artifact suppression, as well as feature preservation, the
mages produced by our method appear to yield more ac-
urate reconstructions than conventional coherent imaging
echniques.

In Sec. 2, we present our nonquadratic regularization-
ased approach. We first develop the method with
p-norm-based potential functionals, and then extend it to
ther nonquadratic potentials. Section 3 contains the ex-
erimental results, and we conclude in Sec. 4.

Nonquadratic Regularization for Complex-
Valued Problems

his section contains the description of the nonquadratic
echnique we propose in this paper. We start by describing
he general form of the observation models we consider.

e then formulate an optimization problem for coherent
maging, which involves a cost functional based on �p
orms. To minimize this cost functional, we propose an
lgorithm based on half-quadratic regularization, and pro-
ide a statistical interpretation of this strategy. Finally we
eneralize our method to incorporate nonquadratic cost
unctionals other than �p norms.

.1 Observation Model
n this paper, we are concerned with inverse problems in
hich the sensor measurements y are related to the under-

ying, unknown field f , through a Fredholm integral equa-
ion of the first kind:

�x� = �
�

T�x,x��f�x�� dx� + w�x� , �1�

here � is the spatial region of interest for the reconstruc-
ion, and w is additive measurement noise. The argument of
f corresponds to 2-D or 3-D spatial coordinates, and the
rguments of y and w depend on the domain of the mea-
urements in specific applications.

We assume that the integral kernel T, which models the
elationship between the underlying field and the measured
ata, is known. For example, T may be a band-limited,
ossibly frequency-offset Fourier transform operator, where
he physics of the problem, the sensor parameters, and the
bservation geometry determine the exact structure. An-
ther example for T, used in tomographic imaging modali-
ies, is projection-type operators, related to the Radon
ransform.23 Yet another form arising in many applications
s convolutional operators. For some particular observation
odels that are of interest in our work �and that we use in

ur experimental analysis�, see Refs. 24 for digital holog-
aphy, Refs. 25 and 26 for SAR, and Refs. 14, 27, and 28
or ultrasound.

In many coherent imaging applications, which involve,
.g., multiple scattering and other second-order phenomena,
he exact equations governing the observation process are
ctually nonlinear. In such scenarios, approximate linear
bservation models as in Eq. �1� can be obtained through
rst-order solutions, which exclude all but primary scatter-

ng. Such linear models include the well-known Born ap-
roximation and the physical optics approximation. These

inear approximations yield acceptable results in many

January 2006/Vol. 45�1�
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practical situations, where our techniques are directly ap-
plicable. On the other hand, it is certainly of interest to
develop inversion techniques based on more accurate non-
linear models. While we address only linear problems in
this paper, the key ideas we present are potentially useful in
nonlinear problems as well, and our method could be gen-
eralized to such cases.

In practice, we discretize the relationship in Eq. �1� and
use the following model for the coherent observation
process:

y = Tf + w , �2�

where y , f, and w are the sampled data, the unknown im-
age, and noise, respectively, all column-stacked as vectors.
Similarly, T is a matrix representing the discrete observa-
tion kernel. To provide some flavor of such discrete opera-
tors, in Fig. 1 we illustrate a tomographic projection opera-
tor that arises in one of the applications of interest in this
paper, namely, SAR. The operator is complex-valued, and
we show only the magnitudes of the elements of the matrix
as a grayscale plot. Each column of the matrix corresponds
to one spatial location in the underlying image, and de-
scribes how the reflectivity at that location contributes to
the projectional radar observations. Each row of the matrix
corresponds to one particular data point �one sample in the
discretized radar return at a particular observation angle�,
and describes the effect of various spatial locations in the

Fig. 1 Grayscale plot �black corresponds to th
magnitude of the elements in a SAR projection
operates in the X band with a center frequency o
an angular span of 2.3 deg.
scene on that data point. i

Optical Engineering 017003-3
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Given the observation model in Eq. �2�, the objective is
o obtain a reconstruction of f, based on the data y. Con-
entional image formation techniques vary depending on
he particular modality and sensor model, and include algo-
ithms based on beamforming, filtered backprojection, and
nverse Fourier transformation, among others.

.2 Cost Functional Based on �p Norms

e propose to find the reconstructed image f̂ as the mini-
izer of the following cost functional:

0�f� = �y − Tf�2
2 + ��D�f��p

p, �3�

here � · �p denotes the �p norm, D is a matrix to be de-
cribed below, �f� denotes the vector of magnitudes of
he complex-valued vector f, and � , p�2 are scalar
arameters.† Note that the formulation of Eq. �3� takes into
ccount the forward model T and starts from the observed
ensor data y, and hence is not simply a postprocessing of a
ormed image.

The first term of J0�f� in Eq. �3� is a data fidelity term,
hile the second term incorporates prior information re-
arding both the behavior of the field f and the nature of the
eatures of interest in the resulting reconstructions. In par-

When p�1, the triangle inequality is not satisfied and it would be more
recise to use the term “quasi-norm” rather than “norm.” However, we

mum value, and white to the minimum� of the
for a 32�32 field. The radar in this example

Hz, and the underlying scene is viewed through
e maxi
matrix

f 10 G
gnore this subtlety and use the term “�p norm” for any value of p.

January 2006/Vol. 45�1�
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ticular, the nonquadratic structure of the second term pro-
vides feature preservation,3,4 where the matrix D deter-
mines the kind of features to be preserved. For example, if
we are interested in reconstructing images consisting of
spatially extended objects and regions, with slowly varying
physical properties �such as reflectivities� within the re-
gions, then a good choice for D is a discrete approximation
to the 2-D spatial derivative operator �gradient�. With this
choice, the second term in Eq. �3� becomes a piecewise
smoothness constraint, imposing smoothness within regions
and allowing sharp transitions across the region boundaries,
leading to edge preservation. In Sec. 3, we show examples
demonstrating the use of this choice of D on digital holog-
raphy and SAR imaging. For a discussion of the structure
of 2-D discrete derivative operators, see the Appendix �Sec.
5.1�.

While edge-preserving reconstruction is of interest in
many coherent-imaging tasks, one might also be interested
in other features. For example, rather than spatially ex-
tended objects, an application might involve imaging spa-
tially localized scatterers. In that case, we would be inter-
ested in preserving the scattering amplitudes of the strong
scatterers in the scene, while suppressing noise and arti-
facts. In our framework, this could be achieved by choosing
D to be an identity operator in Eq. �3�. Such constraints
have been shown to lead to superresolution.29 In Sec. 3, we
show examples demonstrating the use of this choice of D
on ultrasound imaging.

In order to avoid problems due to nondifferentiability of
the �p norm around the origin when p�1, we use a smooth
approximation to the �p-norm in Eq. �3�.3 This leads to the
following slightly modified cost functional to be used in
practice for numerical purposes:

J�f� = �y − Tf�2
2 + ��

i=1

M

���D�f��i�2 + ��p/2, �4�

where ��0 is a small constant, �·�i denotes the i’th element
of a vector, and M is the length of the vector D�f�. Note that
J�f�→J0�f� as �→0.‡

Nonquadratic regularizing constraints such as �p norms
have previously been shown to produce feature-preserving
solutions in problems such as image restoration3 and x-ray
tomography,4 where the signals involved are real-valued. In
contrast, we are interested in coherent systems such as SAR
and holography, where the processed signals are complex-
valued. In many cases of interest, the phase of the unknown
complex-valued field f is highly random, and uncorrelated
with the phase at neighboring pixels. Based on this obser-
vation, in such coherent imaging problems, regularizing
constraints such as smoothness should be applied explicitly
to the magnitudes �f� of the complex-valued reflectivities f.
In our framework, this is achieved through the expression
D�f� in Eq. �4�. This nonlinearity in f makes the optimiza-
tion problem more challenging than those arising in inco-
herent imaging applications. In the next subsection, we pro-

‡Note that there is still some nondifferentiability left in J�f�, due to �f�. One
could in principle apply a similar smooth approximation for this term.
However, to keep the notation simple, we ignore this subtlety in our de-
velopment. One could avoid any practical difficulties this might cause

simply by defining the phase at the origin of the complex plane to be zero. v

Optical Engineering 017003-4
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ose an extension of half-quadratic regularization methods7

o complex-valued, random-phase fields for achieving effi-
ient and robust numerical solution of the optimization
roblems of the form �4�, posed in our framework.

.3 Half-Quadratic Regularization for Coherent
Imaging

he main idea in half-quadratic regularization is to intro-
uce and optimize a new cost functional, which has the
ame minimum as the original nonquadratic cost functional
in our case, J�f��, but one which can be manipulated with
inear algebraic methods. In incoherent imaging applica-
ions, such a new cost functional is obtained by augmenting
he original cost functional with an auxiliary vector.

Currently available half-quadratic regularization meth-
ds designed for incoherent imaging cannot handle the
ore complicated structure of the optimization problems

nvolved in coherent imaging. In order to deal with such
omplications, we propose using two auxiliary vectors, b
nd s, matched to the structure of the problem, to form an
ugmented cost functional K�f ,b ,s� which satisfies

nf
b,s

K�f,b,s� = J�f� . �5�

n particular, we construct K�f ,b ,s� in such a way that it is
uadratic in f �hence the name half-quadratic� and easy to
inimize in b and s. Then the minimization of K�f ,b ,s�

an be performed through a block coordinate descent
pproach.

Now, let us consider our particular cost functional J�f�
f Eq. �4�. We can show that the following augmented cost
unctional K�f ,b ,s� satisfies the relationship �5� for the par-
icular J�f� of Eq. �4� �see Appendix, Sec. 5.2�:

�f,b,s� = �y − Tf�2
2 + ��

i=1

M 	bi���DSf�i�2 + ��

+ 
 p

2bi
� p

2−p
1 −
p

2
�� , �6�

here

= diagexp�− jsl�� , �7�

ith sl the l’th element of the vector s, and diag·� a diag-
nal matrix whose l’th diagonal element is given by the
xpression inside the braces. Due to Eq. �5�, J�f� and
�f ,b ,s� share the same minima in f. Note that K�f ,b ,s� is
quadratic function with respect to f.§ We benefit from the
alf-quadratic structure through the use of an iterative
lock coordinate descent method on K�f ,b ,s�, in order to

nd the field f̂ that also minimizes J�f�:

�n+1� = arg min
s

K�f̂�n�,b̂�n�,s� , �8�

We have obviously omitted the recipe for finding a valid K�f ,b ,s� from
�f� here. We just want to point out that, given any feature-preserving cost
unctional J�f�, the augmented cost functional can be found by using con-

ex duality relationships, and we refer the interested reader to Ref. 7.

January 2006/Vol. 45�1�
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b̂�n+1� = arg min
b

K�f̂�n�,b, ŝ�n+1�� , �9�

f̂�n+1� = arg min
f

K�f,b̂�n+1�, ŝ�n+1�� , �10�

where n denotes the iteration number. Using results from
Sec. 5.2, we obtain

ŝi
�n+1� = ���f̂�n��i� , �11�

b̂i
�n+1� =

p

2��DŜ�n+1�f̂�n��i
2 + ��1−p/2

, �12�

�THT + ��Ŝ�n+1��HDTdiagb̂i
�n+1��DŜ�n+1��f̂�n+1� = THy , �13�

where ��z� denotes the phase of the complex number z. We
can substitute Eqs. �11� and �12� into �13� to obtain a single

iterative expression for f̂�n+1�, which would then constitute
the overall iterative algorithm.

Note that each iteration in Eq. �13� requires the solution

of a set of linear equations for the unknown f̂�n+1�. The
coefficient matrix of this set of equations is Hermitian,
positive semidefinite, and usually sparse. Hence these equa-
tions may themselves be efficiently solved using iterative
approaches. We use the conjugate gradient �CG� algorithm
for this solution, and terminate it when the �2 norm of the
relative residual becomes smaller than a threshold

	CG
0.30 We run the iteration �13� until �f̂�n+1�

− f̂�n��2
2 / �f̂�n��2

2�	, where 	
0 is a small constant. In the
Appendix �Sec. 5.3�, we show that this algorithm is conver-
gent in terms of the cost functional. For algorithms of this
type, stronger results on the convergence of the iterates
exist,4,31 requiring certain assumptions on the nature of the
cost functionals4 or on the nature of the local minima.31 For
the specific algorithm we present here, we have not yet
carried out such a more detailed analysis. In our algorithm,
we use a stopping criterion based on the relative change in

the iterates f̂�n� as stated, and we have not run into
any convergence problems in practice. In general, the
algorithm appears to be reaching a local minimum from
any initialization.

2.4 Statistical Interpretation of Half-Quadratic
Regularization

It is well known that optimization problems of the form in
Eq. �3� can also be interpreted as statistical estimation prob-
lems �see, e.g., Ref. 32�. In particular, the same optimiza-
tion problem is reached when we try to find the maximum
a posteriori �MAP� estimate of the field f based on the data
y using a Gaussian, independent identically distributed
noise model, together with a generalized Gaussian prior
model for the field reflectivity magnitudes, where the spa-
tial dependence structure is governed by the matrix D. The
phase distribution is assumed to be uniform and spatially
independent. As an example, when p=1, we have a Laplac-
ian prior model for the field magnitudes. This heavy-tailed

nature of the prior distribution is what leads to preservation 1

Optical Engineering 017003-5
9

f features such as edges. Note that the prior distribution
ere is non-Gaussian, and spatially stationary.

Now, let us interpret our half-quadratic regularization-
ased algorithm statistically. First note that the cost func-
ional in Eq. �6� is a quadratic function of the field f. Con-
equently, the coordinate-descent-based minimization in
qs. �11�–�13� essentially solves a sequence of quadratic
inimization problems for the field �although this is not

xplicitly shown, it might be observed from the linear
tructure of the iteration in Eq. �13��. However, the qua-
ratic problems contain field-dependent weights involving
he auxiliary vectors b and s. From an estimation stand-
oint, we essentially have a Gaussian prior for the field, but
he distribution is nonstationary due to the field-dependent
eighting, which is adaptively determined. Hence, the half-
uadratic regularization-based algorithm might be viewed
s replacing the original stationary, non-Gaussian problem
ith a series of nonstationary but Gaussian problems.

.5 Extension to Other Nonquadratic
Functionals

n Sec. 2.2, we have formulated the image reconstruction
roblem using a particular family of regularizing function-
ls, namely �p norms. We now generalize our framework
nd iterative algorithm to incorporate a wider range of po-
entially useful choices, which have previously found use
n incoherent image restoration and reconstruction
roblems.4,7,33,34 To this end, let us consider the following
eneral form for the cost functional:

�f� = �y − Tf�2
2 + ��

i

���D�f��i� , �14�

here � denotes the regularizing functional.
Three particular classes of functionals � we consider in

his paper are shown in Table 1.� Note that the use of �1
eads to constraints in terms of approximate �p norms,
hich is precisely what we have discussed in Sec. 2.2. The
otential functional �2 is based on previous work in Ref.
3. Special cases of �2 for p=1 and p=2 yield the potential
unctionals used in Refs. 7 and 4, respectively. Finally, �3
s a generalized version of the potential functional proposed
n Ref. 34. Note that these potential functionals can more
enerally be expressed in terms of x /�, where � is a scal-
ng parameter. We use a fixed �, and omit it in our analysis
or notational simplicity.

One might subtract an appropriate constant from each potential functional
o set �k�0�=0 �k=1, 2, 3�; however, we have chosen not to do so in Table

able 1 Families of potential functionals used. Here p is a param-
ter determining the shape of the functionals, and � is a small
moothing constant.

�1�x� �x2+��p/2

�2�x� �x2+��p/2

1+ �x2+��p/2

�3�x� log�1+ �x2+��p/2�
, to keep the notation simpler.
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Çetin, Karl, and Willsky: Feature-preserving regularization method…
We minimize J�f� in Eq. �14� by using the half-quadratic
regularization-based coordinate descent strategy in Eqs.
�8�–�10�. This requires finding and using the augmented
cost functional K�f ,b ,s� that satisfies the condition in Eq.
�5� for the particular potential functional � used in J�f� of
Eq. �14�. For the sake of brevity, we do not give the ex-
pressions for K�f ,b ,s� for each of the potential functionals
in Table 1, but rather mention how the iterations for the
�p-norm case, given by Eqs. �11�–�13�, would be affected
by the use of a different functional. In fact, the only modi-
fication needed in the iterative algorithm of Eqs. �11�–�13�
is the update for b̂i

�n+1� in Eq. �12�. Table 2 shows the form
of these updates for the three potential functionals of Table
1. Note that the framework we have presented is not limited
to the three specific potential functionals we have used as
examples, and other functionals might be used as well.

3 Experimental Results
We demonstrate the performance of our techniques on three
imaging applications: digital holography, SAR, and ultra-
sound. For particular sensor models in these applications,
see Refs. 14, 24, and 25. In the cost functional of Eq. �4�,
we find that values of p around 1 appear to yield good
results for the applications we consider here. As a result, we
use p=1 in all of our experimental results in this paper. We
choose the hyperparameter �, which appears in the cost
functional J�f� of Eq. �4�, based on subjective qualitative
assessment of the formed imagery. We set the approxima-
tion parameter in the nonquadratic potentials in Table 1 to
be �=10−5, which is small enough not to affect the behavior
of the solution. For the termination condition of our itera-
tive algorithm, we use 	=10−6 and a CG tolerance of 	CG
=10−3.

Figure 2 contains the results of currently available meth-
ods for a holography experiment. The magnitude of the
underlying complex-valued scene is shown in Fig. 2�a�.
The phase of the scene at each pixel is uniformly distrib-
uted, and uncorrelated with the phase at other pixels. We
consider the case of Fraunhofer diffraction1,24 and compute
a band-limited Fourier hologram, which constitutes the
measured data. The amount of data we have after band-
limitation is equal to 76% of the hologram data that would
be needed to form a full-resolution reconstruction of the
original image. The image in Fig. 2�b� is the magnitude of
the conventional reconstruction from the hologram. This

Table 2 The updates for the auxiliary variable b for each of the three
potential functionals

Potential functional Associated b̂i
�n+1�

�1 p /2

��DŜ�n+1�f̂�n��i
2+��1−p/2

�2 p /2

��DŜ�n+1�f̂�n��i
2+��1−p/2��DŜ�n+1�f̂�n��i

2+��p/2+1�2

�3 p /2

��DŜ�n+1�f̂�n��i
2+��1−p/2��DŜ�n+1�f̂�n��i

2+��p/2+1�
result is dominated by coherent speckle artifacts. We now r

Optical Engineering 017003-6
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how how incoherent image-processing techniques can fail
n this problem. In Fig. 2�c�, we show the result of an
ncoherent edge-preserving reconstruction method. In
articular we use nonquadratic regularization with
p-norm-based constraints.3,4 Since such techniques have
een designed for real-valued signals, they are not able to
reat the magnitude and phase components properly. This
eads to some smoothing in the real and imaginary compo-
ents of the field; however, a speckle-dominated magnitude
mage is produced, which shows only minor improvement
ver the conventional image of Fig. 2�b�. In Fig. 2�d�, we
resent the result of applying a variant of anisotropic
iffusion20 to the magnitude of the conventionally recon-
tructed image. Some speckle suppression seems to have
een achieved; however, a significant amount of detail in
he scene has been lost.

In Fig. 3, we present the results of the technique we have
roposed in Sec. 2, with each of the three regularizing po-
entials from Table 1, and p=1. In this experiment, we
hoose D to be a discrete approximation to the 2-D spatial
erivative operator. With suppressed speckle and preserved
dges, our method provides what appears to be an accurate
econstruction of the original scene in Fig. 2�a�. These re-
ults demonstrate the power of our model-based coherent
mage reconstruction approach as compared to standard co-
erent image formation �Fig. 2�b��, incoherent edge-
reserving regularization �Fig. 2�c��, and anisotropic
iffusion-based postprocessing for image enhancement
Fig. 2�d��.

For the remaining examples, we only present images
roduced by conventional imaging and our nonquadratic

ig. 2 Reconstruction of an image from its band-limited Fourier ho-
ogram using currently available techniques. �a� Original scene. �b�
onventional reconstruction. �c� Reconstruction by an edge-
reserving regularization method designed for incoherent imaging.
d� Postprocessing of the conventionally reconstructed image by an
nisotropic diffusion-based method.
egularization-based method. An additional analysis similar
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to that carried out for the digital holography example of
Fig. 2 and 3 yields qualitatively very similar results.

Our next example is from X-band SAR imaging, where
we use a tomographic observation model.25 Figure 4�a�
contains a conventional SAR image of three vehicles in a
field containing some trees. Speckle artifacts, clearly vis-
ible in this reconstruction, make, e.g., automatic segmenta-
tion of SAR images very challenging. In contrast, the im-
ages produced by our method �with p=1 and D being a
derivative operator�, shown in Fig. 4�b�–4�d� for different
regularizing potentials �, produce regions �vehicle,
tree, shadow, background� that appear to be more easily
separable.

Our final results are from ultrasound imaging motivated
by the application of nondestructive evaluation �NDE�. One
of the goals in nondestructive evaluation is to image the
internal structure of homogeneous materials to detect ma-
terial defects such as cracks. We present experimental re-
sults based on data collected at the Large Ultrasound Test

Fig. 3 Reconstruction of an image from its ban
in Sec. 2, with the following choices of regularizin
�3.

Fig. 4 �a� Conventional SAR image of a scene. �b�,�c�,�d� Recon-
structions produced by the technique proposed in Sec. 2, with the
following choices of regularizing functionals from Table 1, and p=1:
l�b� �1, �c� �2, �d� �3.

Optical Engineering 017003-7
10
acility35 at Boston University. The goal in this experimen-
al setup is to image the cross section of an aluminum ob-
ect �modeling the crack� immersed in a tank full of water
modeling the homogeneous material�. Data are collected in

monostatic data acquisition configuration by mechani-
ally scanning a single transducer through a set of aperture
oordinates above the tank. At each data collection point,
e record a broadband echo signal. For the experiments

eported here, we only use frequency-domain data at a tem-
oral frequency of 730 kHz, although our approach could
lso use data at multiple frequencies. For the mathematical
odel relating the underlying image to the observed data,
e use the physical optics approximation, as in Ref. 14.
his leads to a Green’s function, or a complex-valued point
pread function �PSF�, which we use to construct the matrix

in Eq. �2�. This theoretical observation model appears to
e in good agreement with the experimental PSF we have
btained using a spherical point target in our experimental
etup. Further details of this experimental setup are beyond
he scope of the current paper, and will be described else-
here. Let us now start presenting our image reconstruc-

ion results. The synthetic image in Fig. 5�a� shows the
-shaped cross section of the aluminum object, based on

he true dimensions of the object, and its actual relative
ocation within the viewing geometry. This synthetic image
s just to help visualize the “underlying true field” in this
xperiment, and the results we present next are based on
easured data and not on synthetically generated data. In
ig. 5�b�, we show a conventional image, reconstructed us-

ng a regularized pseudoinverse technique.36 Such tech-
iques are widely used in a variety of inverse problems.
his image exhibits some artifacts, making it difficult to
etermine the shape of the imaged object �hence the shape
nd structure of the crack in NDE�. In this application, the
oal is to image narrow cracks rather than spatially distrib-
ted objects; hence in our methods we use D=I in Eqs. �4�
nd �14�. Our technique �p=1� produces the images in Fig.
�c�–5�e� where artifacts are reduced, and the shape of the
luminum object is preserved.

Conclusions
e have presented an optimization-based method for image

ormation in coherent systems. Our approach is based on
ost functionals that are extensions of nonquadratic regu-

d Fourier hologram by the technique proposed
tionals from Table 1, and p=1: �a� �1, �b� �2, �c�
d-limite
g func
arization techniques. The cost functionals are constructed
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in such a way to achieve noise and artifact suppression
together with feature preservation in the resulting images,
while taking into account the nature of the signals involved
in coherent imaging. In order to efficiently solve the opti-
mization problems formulated for coherent imaging, we ex-
tend and use half-quadratic regularization methods. Our ex-
perimental study has shown the effectiveness of this
strategy in obtaining reconstructions that are superior in a
number of ways to conventional coherent images. The im-
provements provided by these reconstructions appear to be
promising for visual and automatic interpretation of the un-
derlying scenes. One interesting direction for future work is
the extension of the techniques presented in this paper to
coherent imaging problems involving nonlinear observation
models.

5 Appendix

5.1 Discrete 2-D Derivative Operators
In our method, we use smoothness constraints on a field,
which require the spatial derivatives of the field. We use the
horizontal and vertical first-order difference operators in
approximating such derivatives. Derivatives of the field in
other directions, such as the diagonals, may be used as
well; however, we have found the use of horizontal and
vertical derivatives sufficient. Consider a real-valued,
sampled field z, column-stacked as a vector of length N
=NxNy, where Nx and Ny denote the numbers of rows and
columns, respectively, in the 2-D field. We can compute
first differences of this field, Dxz and Dyz, in the horizontal
and vertical directions, respectively, where the discrete de-

Fig. 5 Ultrasound imaging experiments based
scribing the underlying scene to be imaged. �b
tions produced by the technique proposed in S
tionals from Table 1, and p=1: �c� �1, �d� �2, �e
rivative operators are given by f

Optical Engineering 017003-8
10
x = �− I I

� �

− I I
� �15�

nd

y = �
D1

D1

�

D1

� , �16�

ith

1 = �− 1 1

� �

− 1 1
� . �17�

ote that, since we take first differences between neighbor-
ng pixels, it is appropriate to have the discrete derivatives
efined on the locations between the adjacent pixels. With
hese definitions, Dx then has a size of Ny�Nx−1��NxNy,
nd Dy has a size of Nx�Ny −1��NxNy. Hence, these are
onsquare operators. However, if the use of square deriva-
ive operators is desired, the preceding definitions can be
ugmented by derivatives defined at the boundary of the
eld. This may be preferred, for example, when one wants

o associate each derivative to a pixel location.
We now describe two ways to compute the smoothness

onstraint terms, of the form �Dz�p
p, that appear in objective

asured 730-kHz data. �a� Synthetic image de-
entional reconstruction. �c�,�d�,�e� Reconstruc-
with the following choices of regularizing func-
on me
� Conv
ec. 2,
unctionals such as that in Eq. �3�. The discussion can eas-
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ily be generalized to smoothness constraints with other po-
tential functionals, such as those considered in Sec. 2.5.

The first approach is based on treating the horizontal and
vertical derivatives separately when imposing a smoothness
constraint. This is achieved by defining the 2-D discrete
derivative operator D as follows:

D � �Dx

Dy
� . �18�

With this definition, we can write �Dz�p
p as

�Dz�p
p = �

i=1

M

��Dz�i�p = �
i=1

Mx

��Dxz�i�p + �
i=1

My

��Dyz�i�p

= �Dxz�p
p + �Dyz�p

p, �19�

where Mx�Ny�Nx−1� , My�Nx�Ny −1�, and M =Mx+My.
The second approach is based on treating the gradient

at each pixel location as a two-element vector
��Dxz�i �Dyz�i�T, composed of the horizontal and vertical
gradients, and using the �2 norms of such gradients at all
locations in the field for the computation of the overall �p
norm:

�Dz�p
p � �

i=1

N

���Dxz�i�2 + ��Dyz�i�2�p/2. �20�

Two things must be noted here. First, the use of a linear
operator D is only conceptual in this case, because no such
explicit matrix exists. Second, this approach requires a one-
to-one correspondence between horizontal and vertical de-
rivatives at each location in the scene; hence in this case we
use square �N�N� derivative operators Dx ,Dy.

In our method, we make use of both approaches de-
scribed; however, all the mathematical expressions in the
body of this paper are based on the first approach. Note that
when p=2, the two approaches are identical, with the use
of square derivative operators. To make the association be-
tween the two approaches clear, let us consider square de-
rivative operators, and examine the first approach in this
case:

�Dz�p
p = �

i=1

N

��Dxz�i�p + �
i=1

N

��Dyz�i�p �21�

=�
i=1

N

���Dxz�i�p + ��Dyz�i�p� . �22�

Let us compare this expression with the second approach,
given in Eq. �20�. There the �2 norm of the gradient vector
at each location is used in the computation of the overall �p
norm. In contrast, the first approach, as shown in Eq. �22�,
corresponds to using an �p norm for the gradient vector
��Dxz�i �Dyz�i�T at each location. This association lets us
compare the consequences of using the two approaches.
For example, when p�2, the first approach used in a
smoothness constraint would favor horizontal and vertical
edges over diagonal edges, more than in the second

approach. i

Optical Engineering 017003-9
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.2 Half-Quadratic Functional for �p-Norm-Based
Regularization

he objective of this subsection is to prove the relationship
5�, which we repeat below, between the particular func-
ionals J�f� of Eq. �4� and K�f ,b ,s� of Eq. �6�:

nf
b,s

K�f,b,s� = J�f� . �23�

his relationship shows that K�f ,b ,s� of Eq. �6� is a valid
ugmented cost functional to be used in half-quadratic
egularization for the functional J�f� of Eq. �4�.

To keep the derivation simple, we consider a 1-D signal
, rather than a 2-D field, in this subsection. The results
owever can easily be extended to the 2-D case. We assume
he following structure for the discrete 1-D derivative
perator D:

= �− 1 1

� �

− 1 1
� , �24�

hich simply consists of two-element differences.
Let us now find s and b that minimize K�f ,b ,s� of Eq.

6�. First consider s. The portion of K�f ,b ,s� that depends
n s is the following:

i=1

M

bi��DSf�i�2. �25�

ased on the structures of D in Eq. �24� and S in Eq. �7�,
e have

DSf�i = − exp�− jsi� fi + exp�− jsi+1� fi+1, �26�

nd consequently

�DSf�i�2 = �fi�2 + �fi+1�2 − 2R��fi� �fi+1�exp�j���f�i�

− ���f�i+1���exp�j�si+1 − si��� . �27�

ere ���f�i� denotes the phase of the complex number fi.
he sum in Eq. �25� takes its minimum value when the
roduct inside the outermost brackets in Eq. �27� has
zero imaginary part for all i. Hence the minimizing s

atisfies

i+1 − si + ���f�i� − ���f�i+1� = 0. �28�

We could have obtained this result by the following
ualitative argument as well. We want to minimize Eq.
25�, which is a weighted sum of squared norms of the
ifferences between complex-number pairs of the form zi
exp�−jsi� fi. The variables we have for optimization are si

or all i, hence we can essentially choose the phase of each
omplex number. Naturally, the minimum is obtained when
he complex numbers zi have identical phase, since this
akes the norm of the difference between two complex

umbers as small as possible. This is exactly what the con-
ition in Eq. �28� implies: the optimum si should “rotate” fi

n such a way that the resulting zi have the same phase for
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all i. Note that we still have a freedom in choosing what
that identical phase is. If we simply choose it to be 0, then
we have the following optimal s:

si = ���f�i� ∀ i . �29�

Note that with this s, we have Sf= �f�. Hence,

inf
s

K�f,b,s� = �y − Tf�2
2 + ��

i=1

M �bi���D�f��i�2 + ��

+ 
 p

2bi
� p

2−p
1 −
p

2
�� . �30�

Next, let us consider b. Differentiating the summand in
Eq. �30� and setting it equal to zero, we obtain the follow-
ing condition for the minimizing b:

bi =
p

2���D�f��i�2 + ��1−p/2 . �31�

Substituting Eq. �31� in K�f ,b ,s�, we obtain the result we
desire:

inf
b,s

K�f,b,s� = �y − Tf�2
2 + ��

i=1

M

���D�f��i�2 + ��p/2 = J�f� , �32�

which shows that Eq. �5� holds for J�f� of Eq. �4� and
K�f ,b ,s� of Eq. �6�.

5.3 Convergence of the Algorithm in Sec. 2.3

Let us consider the sequence Kn=K�f̂�n� , b̂�n+1� , ŝ�n+1��, and
show that it is convergent. From Eqs. �8� and �9�, we have

K�f̂�n�,b̂�n�, ŝ�n+1�� � K�f̂�n�,b̂�n�, ŝ�n�� ∀ n , �33�

K�f̂�n�,b̂�n+1�, ŝ�n+1�� � K�f̂�n�,b̂�n�, ŝ�n+1�� ∀ n , �34�

which implies

K�f̂�n�,b̂�n+1�, ŝ�n+1�� � K�f̂�n�,b̂�n�, ŝ�n�� . �35�

Similarly, from Eq. �10�, we have

K�f̂�n+1�,b̂�n+1�, ŝ�n+1�� � K�f̂�n�,b̂�n+1�, ŝ�n+1�� ∀ n . �36�

Now, let us consider the difference:

Kn − Kn−1 = �K�f̂�n�,b̂�n+1�, ŝ�n+1�� − K�f̂�n�,b̂�n�, ŝ�n���
+ �K�f̂�n�,b̂�n�, ŝ�n�� − K�f̂�n−1�,b̂�n�, ŝ�n��� . �37�

Using Eqs. �35� and �36�, we obtain

Kn − Kn−1 � 0 ∀ n , �38�

which means that the sequence Kn is decreasing. Since it is
bounded below and decreasing, the sequence Kn converges.
Hence the algorithm in Sec. 2.3 is convergent in terms of

the cost functional. A similar convergence result can be

Optical Engineering 017003-1
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pplied to the variants of this algorithm described in later
ections.

cknowledgments
e would like to thank in Emmanuel Bossy and Robin
leveland, from the Acoustics Group at Boston University,

or collecting and providing the ultrasound data. This work
as supported in part by the Army Research Office under
rants DAAD19-00-1-0466 and DAAG55-97-1-0013, the
ir Force Office of Scientific Research under grants
49620-00-0362 and F49620-96-1-0028, and the National
nstitutes of Health under grant NINDS 1 R01 NS34189.

eferences

1. J. M. Blackledge, Quantitative Coherent Imaging, Academic Press,
San Diego, CA �1989�.

2. A. N. Tikhonov, “Solution of incorrectly formulated problems and
the regularization method,” Sov. Math. Dokl. 4, 1035–1038 �1963�.

3. C. R. Vogel and M. E. Oman, “Fast, robust total variation-based
reconstruction of noisy, blurred images,” IEEE Trans. Image Process.
7�6�, 813–824 �1998�.

4. P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Barlaud, “Deter-
ministic edge-preserving regularization in computed imaging,” IEEE
Trans. Image Process. 6�2�, 298–310 �1997�.

5. D. C. Munson, Jr., and J. L. C. Sanz, “Image reconstruction from
frequency-offset Fourier data,” Proc. IEEE 72�6�, 661–669 �1984�.

6. D. L. Donoho and M. Elad, “Optimally sparse representation in gen-
eral �nonorthogonal� dictionaries via �1 minimization,” Proc. Natl.
Acad. Sci. U.S.A. 100�5�, 2197–2202 �2003�.

7. D. Geman and G. Reynolds, “Constrained restoration and the recov-
ery of discontinuities,” IEEE Trans. Pattern Anal. Mach. Intell. 14�3�,
367–383 �1992�.

8. J. He and S. X. Pan, “Magnitude reconstruction of complex images
from incomplete Fourier phase data,” in 16th Annual Conf. of the
IEEE Industrial Electronics Society, Vol. 1, pp. 357–362 �1990�.

9. B. K. Jennison and J. P. Allebach, “Maximum likelihood image re-
construction from Fourier-offset data using the expectation-
maximization algorithm,” in IEEE Int. Conf. on Acoustics, Speech,
and Signal Processing, Vol. 4, pp. 2597–2600 �1991�.

0. M. Rabbani and B. E. A. Saleh, “Bayesian filtering of speckled im-
ages,” Opt. Commun. 53�3�, 147–152 �1985�.

1. J. F. Giovannelli, A. Herment, and G. Demoment, “A Bayesian ap-
proach to ultrasound Doppler spectral analysis,” in IEEE Ultrasonics
Symp., pp. 1055–1058 �1993�.

2. C. P. Mariadassou and B. Yegnanarayana, “Image reconstruction
from noisy digital holograms,” IEE Proc. F, Radar Signal Process.
137�5�, 351–356 �1990�.

3. H. Carfantan and A. Mohammad-Djafari, “A Bayesian approach for
nonlinear inverse scattering tomographic imaging,” in IEEE Int.
Conf. on Acoustics, Speech, and Signal Processing, Vol. 4, pp. 2311–
2314 �1995�.

4. D. J. Battle, R. P. Harrison, and M. Hedley, “Maximum entropy im-
age reconstruction from sparsely sampled coherent field data,” IEEE
Trans. Image Process. 6�8�, 1139–1147 �1997�.

5. D. J. Battle, “Maximum entropy regularisation applied to ultrasonic
image reconstruction,” PhD Thesis, Univ. of Sydney �1999�.

6. J. M. Gorce, D. Friboulet, J. D’hooge, B. Bijnens, and I. E. Magnin,
“Regularized autoregressive models for a spectral estimation scheme
dedicated to medical ultrasonic radio-frequency images,” in IEEE
Ultrasonics Symp., pp. 1461–1464 �1997�.

7. P. Ciuciu, J. Idier, and J. F. Giovannelli, “Regularized estimation of
mixed spectra using a circular Gibbs-Markov model,” IEEE Trans.
Image Process. 49�10�, 2202–2213 �2001�.

8. O. Husby, T. Lie, T. Langø, J. Hokland, and H. Rue, “Bayesian 2-D
deconvolution: a model for diffuse ultrasound scattering,” IEEE
Trans. Ultrason. Ferroelectr. Freq. Control 48�1�, 121–130 �2001�.

9. K. Z. Abd-Elmoniem, A.-B. M. Yousef, and Y. M. Kadah, “Real-time
speckle reduction and coherence enhancement in ultrasound imaging
via nonlinear anisotropic diffusion,” IEEE Trans. Biomed. Eng. 49�9�,
997–1014 �2002�.

0. P. Perona and J. Malik, “Scale-space and edge detection using aniso-
tropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell. 12�7�, 629–
639 �1990�.

1. A. Abubakar and P. M. van den Berg, “A multiplicative weighted
l2-norm total variation regularization for deblurring algorithms,” in
IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Vol. 4,
pp. 3545–3548 �2002�.

2. S. Sotthivirat and J. A. Fessler, “Penalized-likelihood image recon-

struction for digital holography,” J. Opt. Soc. Am. A 21�5�, 737–750

January 2006/Vol. 45�1�0
3



i
s

h
S
D
b
c
i
e
v
C
o
t
i
c
i
E

a
s
l
m
m
t
o
t
h
f
p

Çetin, Karl, and Willsky: Feature-preserving regularization method…
�2004�.
23. A. C. Kak and M. Slaney, Principles of Computerized Tomographic

Imaging, IEEE Press, New York �1988�.
24. L. P. Yaroslavskii and N. S. Merzlyakov, Methods of Digital Holog-

raphy, Consultants Bureau, New York �1980�.
25. D. C. Munson, Jr., J. D. O’Brien, and W. K. Jenkins, “A tomographic

formulation of spotlight-mode synthetic aperture radar,” Proc. IEEE
71, 917–925 �Aug. 1983�.

26. C. V. Jakowatz, Jr., D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and P. A.
Thompson, Spotlight-mode Synthetic Aperture Radar: A Signal Pro-
cessing Approach, Kluwer Academic Publishers, Norwell, MA
�1996�.

27. J. A. Jensen, Estimation of Blood Velocities Using Ultrasound: A
Signal Processing Approach, Cambridge University Press, Cam-
bridge, UK �1996�.

28. J. T. Ylitalo and H. Ermert, “Ultrasound synthetic aperture imaging:
monostatic approach,” IEEE Trans. Ultrason. Ferroelectr. Freq. Con-
trol 41�3�, 333–339 �1994�.

29. D. L. Donoho, I. M. Johnstone, J. C. Koch, and A. S. Stern, “Maxi-
mum entropy and the nearly black object,” J. R. Stat. Soc. Ser. B.
Methodol. 54�1�, 41–81 �1992�.

30. G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hop-
kins Univ. Press, Baltimore �1996�.

31. A. H. Delaney and Y. Bresler, “Globally convergent edge-preserving
regularized reconstruction: an application to limited-angle tomogra-
phy,” IEEE Trans. Image Process. 7�2�, 204–221 �1998�.

32. W. C. Karl, “Regularization in image restoration and reconstruction,”
in Handbook of Image and Video Processing, A. Bovik, Ed., pp.
141–160, Academic Press �2000�.

33. S. Geman and D. E. McClure, “Statistical methods for tomographic
image reconstruction,” in Proc. 46th Sess. Int. Statistical Institute,
Bull. ISI 52 �1987�.

34. T. Hebert and R. Leahy, “A generalized EM algorithm for 3-D Baye-
sian reconstruction from Poisson data using Gibbs priors,” IEEE
Trans. Med. Imaging 8, 194–202 �1989�.

35. Boston University Acoustics Group, Medical Ultrasound Testbed
�MedBED�, Web page, http://www.bu.edu/paclab/censsis/medbed/

36. R. L. Lagendijk and J. Biemond, Iterative Identification and Resto-
ration of Images, Kluwer, Boston, �1991�.

Müjdat Çetin received his BS degree from
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ABSTRACT

We propose an image formation algorithm for ultrasound
imaging based on sparsity-driven regularization functionals.
We consider data collected by synthetic transducer arrays,
with the primary motivating application being nondestruc-
tive evaluation. Our framework involves the use of a physical
optics-based forward model of the observation process; the
formulation of an optimization problem for image formation;
and the solution of that problem through efficient numeri-
cal algorithms. Our sparsity-driven, model-based approach
achieves the preservation of physical features while suppress-
ing spurious artifacts. It also provides robust reconstructions
in the case of sparse observation apertures. We demonstrate
the effectiveness of our imaging strategy on real ultrasound
data.

1. INTRODUCTION

Nondestructive evaluation (NDE) of materials is a critical
task in applications including defense, nuclear power, manu-
facturing, and infrastructure monitoring [1]. Through imag-
ing, one could view the internal structure of homogeneous ma-
terials to determine the presence, severity, and characteristics
of inhomogeneities, such as cracks. Ultrasound continues to
be the imaging modality of choice in many NDE scenarios due
to its safety, versatility, and low cost [1]. There are a number
of data collection and imaging setups, and here we focus on a
monostatic configuration, consisting of a non-focused trans-
ducer mechanically scanned to construct a synthetic aperture.
At each mechanically scanned position, the transducer sends
acoustic pulses and records the scattered waveforms. Given
such data, the goal is to reconstruct a 3-D image of the mate-
rial or that of a 2-D cross section. A conventional technique to
reconstruct images is beamforming, which suffers from poor
resolution and sidelobe artifacts. One could also consider
data inversion through a pseudoinverse operation, which is
very sensitive to noise in the data.

A current trend in many imaging applications is to de-
velop and study imaging strategies for the case of sparse
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apertures, in which the data lie in a small and potentially
irregular portion of what would be considered a full aperture
of spatial or spectral observation points. In some applications
sparse apertures emerge as a result of physical or geometric
constraints in the observation scenario (e.g. we cannot place
the sensor at a particular location). In other applications,
such apertures are of interest, because sensing is viewed as a
dear resource, and the goal is to form accurate images with
as little data as possible. When data are limited and lie
on an irregular grid, conventional imaging strategies suffer
severely from degraded resolution and imaging artifacts. For
the practical utility of such sparse-aperture sensing scenarios,
advanced image formation algorithms that produce enhanced
imagery facilitating visual or automatic interpretation of the
underlying scenes are needed.

We propose a new approach for ultrasound imaging to
produce enhanced images especially in challenging scenarios
involving sparse apertures. The primary application that has
motivated us is nondestructive evaluation, although the ap-
proach could be adapted to other applications as well. Our
framework is based on a regularized reconstruction of the un-
derlying reflectivity field based on the scattered ultrasound
data. We use nonquadratic regularization functionals which
exploit the expected sparsity of the underlying fields. In
our previous work, we have applied such sparsity-driven ap-
proaches to other wave-based imaging problems such as radar
imaging [2]. Such functionals enable the preservation of strong
physical features (such as strong scatterers or boundaries be-
tween regions with different reflectivity properties), and have
been shown to lead to superresolution. We combine such
functionals with a data fidelity term based on a physical
optics-based linear model of the observation process to formu-
late an optimization problem for image formation. We solve
the resulting optimization problem using efficient numerical
algorithms.

There are a number of publications which have relations
to our perspective for ultrasound imaging. A Bayesian ap-
proach for the nonlinear inverse scattering problem of tomo-
graphic imaging using ultrasound probing has been proposed
in [3]. In [4], maximum entropy regularization has been used
for image reconstruction from sparsely sampled coherent field
data. The work in [5] proposes a regularized autoregressive
model for spectral estimation, with application to medical ul-
trasonic radio-frequency images. A statistical deconvolution
technique for diffuse ultrasound scattering has been proposed
in [6], where sampling techniques are used for inference. Fi-
nally the approach in a recent thesis [7], performed indepen-
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dently from our work, shares some of the key ideas in this
paper.

There are a number of aspects of our work that differ-
entiate it from existing literature. A detailed comparison is
beyond the scope of this paper, but some key aspects of our
work include: use of �p-norms for regularization which can
seamlessly handle complex-valued data; use of sparsity con-
straints both on the complex-valued reflectivity field as well
as on the gradient of its magnitude; development and use
of efficient optimization algorithms matched to the problem
structure. Given the previous work by us and others on the
use of these types of algorithms in other applications, the con-
tribution of this paper is the adaptation of these ideas to the
ultrasound imaging modality through the incorporation of a
physics-based forward model, as well as demonstration of the
effectiveness of the approach on real, sparse-aperture ultra-
sound data. In particular, these experiments show how the
proposed approach can provide improved resolution, reduced
artifacts, and robustness to aperture sparsity as compared to
conventional imaging methods.

2. OBSERVATION MODEL FOR ULTRASOUND
SCATTERING

The observation model we use for ultrasound scattering is
based on a linearization of the scalar wave equation. We use
the following Green’s function to model the scattered field in
space in response to a point source of excitation:

G(|r′ − r|) =
exp(jk(|r′ − r|)

4π|r′ − r| (1)

where r and r′ denote the source location and the observa-
tion location, respectively, in three-dimensional space, and k
is the wavenumber. In this paper we consider a monostatic
data acquisition scenario. In specifying the response of a scat-
terer to an incident field emitted by a transducer, we assume
the case of impenetrable scatterers. This is reasonable for a
nondestructive evaluation application since inhomogeneities
such as cracks act as strong reflectors of ultrasound energy.
This leads us to use the physical optics approximation in lin-
earizing the wave equation to obtain the following observation
model:

y(r′) = 2jk

∫
G2(|r′ − r|)f(r)dr (2)

where y(·) denotes the observed data and f(·) denotes the un-
derlying, unknown reflectivity field. Note that squaring the
Green’s function captures the two-way travel from the trans-
ducer to the target and back. Also note that the observation
model in (2) involves essentially a shift invariant point spread
function. We discretize this model and take into account the
presence of measurement noise to obtain the following dis-
crete observation model:

y = Tf + n (3)

where y and n denote the measured data and the noise, re-
spectively, at all transducer positions; f denotes the sampled
unknown reflectivity field; and T is a matrix representing the
observation kernel in (2). In particular, each row of T is
associated with measurements at a particular transducer po-
sition. The entire set of transducer positions determines the

nature of the aperture used in a particular experiment, and
the matrix T carries information about the geometry and the
sparsity of the aperture.

3. SPARSITY-DRIVEN IMAGING

Given the noisy observation model in (3), the imaging prob-
lem is to find an estimate of f based on the data y. In general
this is an ill-posed inverse problem, and its solution requires
the incorporation of explicit or implicit prior information or
constraints about the underlying field f . One type of generic
prior information that has recently been successfully applied
in a number of imaging applications involves the sparsity of
some aspect of the underlying field. In the context of ultra-
sound imaging for nondestructive evaluation, such sparsity
priors could also be a valuable asset, as we expect the un-
derlying homogeneous material to be fairly sparse in terms of
both the location of inhomogeneities (e.g. cracks), as well as
the boundaries between such inhomogeneities and the homo-
geneous background.

It has been observed that imposing sparsity directly leads
to combinatorial optimization problems, but both empirical
and recent theoretical results suggest that this could in prac-
tice be achieved by relaxed and tractable nonquadratic opti-
mization formulations, based on e.g. �p-norms (see, e.g. [8]).
This is the strategy we adopt in this paper. In particular we
propose to find the reconstructed image f̂ as the minimizer
of the following cost functional:

J(f) = ‖y − Tf‖2

2 + λ1‖f‖p
p + λ2‖∇|f |‖p

p (4)

where ‖ · ‖p denotes the �p-norm (0 < p ≤ 1), ∇ denotes a
discrete approximation to the spatial gradient operator, |f |
denotes the vector of magnitudes of the complex-valued vec-
tor f , and λ1, λ2 are scalar parameters. The first term of J(f)
in (4) is a data fidelity term, while the other terms are reg-
ularizing sparsity constraints. In particular, the second term
has the role of preserving strong scatterers such as cracks
while suppressing artifacts (these types of constraints lead
to superresolution). The third term has the role of smooth-
ing homogeneous regions while preserving sharp transitions,
such as those between cracks and the background. The rel-
ative magnitudes of the scalar parameters λ1 and λ2 deter-
mine the emphasis on each term. In our experimental work,
we use the second term as the dominant one, and use values
of p around 1. We solve the optimization problem in (4) by
adapting efficient iterative algorithms we have developed in
our previous work [2] to the ultrasound imaging application.

4. EXPERIMENTS

We present the results of imaging experiments based on data
collected at the Large Ultrasound Test Facility (LUTF) [9] at
Boston University.

4.1. Data Collection

In our experiments we use a tank full of water as the ho-
mogeneous material in which waves propagate. We insert an
aluminum object inside this homogeneous medium as the in-
homogeneity. The objective of the imaging experiments is
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(a) (b)

Fig. 1. The point spread function (PSF) of the data collec-
tion system at 300 kHz. (a) Measured using a 1 mm diam-
eter spherical scatterer. (b) Theoretical model. (Real parts
shown.)

to reconstruct a 2-D cross section of this object. We use a
monostatic arrangement in which a broadband single-element
unfocused transducer is mechanically moved on a 64×64 grid
of locations (covering a square with a side of 76.8 mm.) at the
top of the tank to send and receive acoustic waveforms. We
place the object to be imaged at a depth of 175 mm, and time-
gate the reflected signals to isolate the response from that
depth. The transducer emits a broadband signal, whose two
most significant peaks are at 730 kHz and 300 kHz (with the
corresponding wavelengths of 2 mm and 5 mm). We trans-
form the time-gated received signal to the frequency domain
and extract the response at these two frequencies. Although
our framework is suitable for processing multi-channel data,
in this paper we focus on processing single-channel data at
each of these two frequencies.

In order to experimentally estimate the impulse response
of the system to test the validity of the theoretical model
described in Section 2, we have first collected data from a
spherical aluminum scatterer of 1 mm diameter. Real part
of the data measured at 300 kHz through the full 64 × 64
aperture is displayed in Fig. 1(a). Real part of the point
spread function based on the theoretical model in (2) is shown
in Fig. 1(b), which is in very well agreement with Fig. 1(a).
We use this theoretical model to construct the operator T in
our experiments.

In Fig. 2(a) we illustrate the shape and the location of the
U-shaped cross section of the aluminum object to be imaged
(our use of this shape is inspired by the experiments in [4]).
The length of each side is 12 mm, and the thickness is 2.4 mm.
Real part of the measured full-aperture data at 300 kHz in
the presence of this object in the tank is shown in Fig. 2(b).

4.2. Results

We first present the results of full-aperture imaging experi-
ments based on the type of scattered data shown in Fig. 2(b).
Fig. 3(a) and (b) show the results of two conventional imaging
strategies, beamforming and regularized pseudoinverse [10],
respectively, at 730 kHz and 300 kHz. At 730 kHz beamform-
ing produces a good reconstruction, however when we reduce
the operating frequency to 300 kHz significant resolution loss
occurs. Low-frequency operation is of interest because acous-
tic waves suffer from more attenuation as the frequency is
increased. The regularized pseudoinverse approach aims to

−0.03 −0.02 −0.01 0 0.01 0.02 0.03

−0.03
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0
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Fig. 2. (a) Location and shape of the cross-section of the
aluminum object to be imaged. (b) Real part of the data
scattered by the object at 300 kHz.

improve upon the pseudoinverse operation (which is unsta-
ble in the presence of measurement noise, and consequently
not considered here) by solving the problem iteratively and
providing regularization through early stopping. Although
this gets rid of severe artifacts, the resulting images shown
in Fig. 3(b) still do not exhibit the shape of the inhomogene-
ity very accurately. The reconstructions obtained using our
proposed approach are shown in Fig. 3(c) and provide much
more accurate images of the U-shaped object, even at the low
operating frequency of 300 kHz. In our experiments, we use
p = 1, and λ1 � λ2.

1 This relative choice of λ1 and λ2 indi-
cates our emphasis on preserving and sharpening the strong
scattering from inhomogeneities in the scene while suppress-
ing background artifacts.

Next we consider a sparse aperture, in particular the star-
shaped synthetic aperture shown in Fig 4. (Note that the full
aperture used in the previous experiments was based on mea-
surements on the 64×64 square region in Fig 4.) The number
of data collection points in this sparse aperture is only 6% of
the full aperture considered in the previous experiments. The
imaging results are shown in Fig. 5. The conventional images
shown in Fig. 4(a) and (b) suffer from insufficient resolvability
of fine features and sidelobe artifacts caused by the sparsity
of the aperture, making it difficult to infer the shape of the
inhomogeneity. Our approach is able to suppress such ar-
tifacts and recover the shape as shown in Fig 4(c). These
results illustrate the robustness of our strategy to data limi-
tations due to the sparsity of the aperture. The experiments
we have conducted are based on data carefully collected in
a controlled environment, and hence represent a high-SNR
scenario. We also expect our imaging strategy to provide
improved robustness in low-SNR data collection scenarios.

5. CONCLUSION

We have proposed and demonstrated a sparsity-driven im-
age formation approach for ultrasound imaging with applica-
tion to nondestructive evaluation. Attractive characteristics
of the proposed technique include improved resolvability of
fine features, suppression of artifacts, and robustness to the
sparsity of the observation aperture. Based on the initial
work presented in this paper, a number of directions emerge
as potential research topics. First, although the study in this

1We do not specify the actual values as they depend on the
scaling of the data in a particular experiment, and hence are not
very informative.
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(a) (b) (c)

Fig. 3. Reconstructed images from full-aperture data. (Mag-
nitudes shown.) Top: 730 kHz. Bottom: 300 kHz. (a)
Beamforming. (b) Regularized pseudoinverse. (c) Proposed
method.
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Fig. 4. Transducer positions used to construct a sparse aper-
ture. Relative to the full-aperture used, this aperture is 6%
filled.

paper was limited to monostatic, single-channel data, exten-
sion of the developed framework to the multistatic case, as
well as to the processing of multi-channel data is straightfor-
ward. Our work could also be used for forming 3-D images.
For the experimental setup considered in this paper, a linear
observation model based on a single-scattering assumption
was reasonable, however it might be of interest to generalize
the framework to the case of multiple scattering and nonlin-
ear models. It is also worthwhile to characterize the behav-
ior of the proposed approach as the problem becomes more
challenging (e.g. through the scene content, frequency of op-
eration, sparsity of the aperture, etc.), and understand how
the performance of the proposed approach degrades. Finally,
although nondestructive evaluation was the motivating appli-
cation here, it is of interest to adapt and apply this technique
on other ultrasound applications, the most notable one being
medical imaging.
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ABSTRACT

In this paper we present an algorithm for wide-angle synthetic aperture radar (SAR) image formation. Recon-
struction of wide-angle SAR holds a promise of higher resolution and better information about a scene, but it
also poses a number of challenges when compared to the traditional narrow-angle SAR. Most prominently, the
isotropic point scattering model is no longer valid. We present an algorithm capable of producing high resolution
reflectivity maps in both space and aspect, thus accounting for the anisotropic scattering behavior of targets. We
pose the problem as a non-parametric three-dimensional inversion problem, with two constraints: magnitudes
of the backscattered power are highly correlated across closely spaced look angles and the backscattered power
originates from a small set of point scatterers. This approach considers jointly all scatterers in the scene across all
azimuths, and exploits the sparsity of the underlying scattering field. We implement the algorithm and present
reconstruction results on realistic data obtained from the XPatch Backhoe dataset.

Keywords: SAR, wide-angle, sparse measurements, edge-preserving regularization

1. INTRODUCTION

Wide-angle SAR (WSAR), where radar returns are collected over a large range of angles, holds the promise
of increased spatial resolution. However, in collecting data over such a large angular range a number of the
assumptions used in standard, narrow-angle SAR are violated. In particular, the common assumption that
target reflectivity is only a function of spatial location, and not aspect, is no longer a good approximation to
reality. Over large angular extents the energy reflected by targets is, in general, not uniform and most targets
exhibit only limited scattering persistence.1

As a result, standard Fourier-based SAR image formation algorithms, such as the polar-format algorithm, per-
form poorly. The resulting imagery produced by these methods have limited resolution and display confounding
artifacts.2 Overall, these methods fail to completely realize the potential of WSAR.

Wide angle SAR reconstruction has been addressed in several papers. In one work, WSAR is approached
as a collection of multiple overlapping 20o sub-apertures and reflectivity functions in each sub-aperture are
independently reconstruct via the conventional polar-format algorithm or point-enhanced lp norm regularization.2

Alternatively, the problem is approached as a sparse, inverse problem over an overcomplete dictionary, with a
dictionary element representing a prescribed reflectivity signature of a spatial pixel along the azimuth direction.3

In this paper, we also consider a spotlight synthetic aperture radar system (SAR)4 with collocated transmitter
and receiver operating in a monostatic configuration over a large angular range. Similar to the overcomplete
dictionary approach,3 we explicitly model the anisotropy of the target scattering behavior and estimate the angle-
dependent scattering behavior at each scatter location. In contrast to previous approaches, however, we approach
the problem as a direct, non-parametric reconstruction of the entire three-dimensional angle-dependent scattering
field. We exploit the correlations in target reflectivity in aspect and the spatial sparsity of target scattering by
including priors on this behavior in the reconstruction process. This approach does not require detailed prior
knowledge of scatter type, yet can successfully focus information in the data. In addition, this approach provides
robustness to data loss, allowing preservation of image quality from reduced data.

The rest of the paper is organized as follows. In Section 2 we outline the basic spotlight SAR scattering
physics and present the anisotropic forward scattering model we use. Section 3 outlines our inverse problem
formulation and finally Section 4 gives image reconstruction results obtained by the algorithm.
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2. FORWARD MODEL

Typical assumption for narrow synthetic apertures is that the reflectivity of a given spatial differential area
is isotropic. While this is a reasonable assumption for narrow apertures of a few degrees, most of the scene’s
scatterers exhibit anisotropic response when viewed over large aspects. In contrast to isotropic scattering where
the reflectivity function is a function of spatial variables (xp, yp), in the general case, the reflectivity is additionally
dependent on the aspect angle. A backscattered signal r(xp,yp)(t, θ) of a spatial differential area centered at
(xp, yp) to a pulse γ(t) transmitted at time t, with the aircraft at an aspect θ is a delayed transmitted pulse
modulated by the area’s anisotropic reflectivity function s(xp, yp, θ). Mathematically, the backscattered signal
is described by the following equation:

r(xp,yp)(t, θ) = �
{

A(xp, yp, θ)s(xp, yp; θ)γ
(

t − 2
Rp(θ)

c

)}
dxdy,

where Rp(θ) is the distance from the differential area dxdy to the aircraft location at the aspect θ. The factor
A(xp, yp, θ) accounts for propagation attenuation, transmitter and receiver antenna beam patterns, etc. This
factor can be safely ignored, i.e. assumed to be a constant, when the scene extent is much smaller compared to
the aircraft’s stand-off range and when transmit and receive antenna beampatterns are omnidirectional. Again,
typical isotropic point scattering assumption is relaxed in order to account for limited reflectivity persistence
over wide aspect angles.

Now, to characterize a return from a realistic complex scene, a typical set of operating assumptions are put
in place. When the impinging signal wavelength is small relative to the target extent, the overall response of
a complex scene is well approximated as a superposition of a set of the scene’s differential scatterers. Under
the single-scattering (Born) approximation there is no interaction of scene components. Assuming that the
transmitted waveform is a chirp pulse γ(t) = ej(2πfct+αt2) with center frequency fc and rate α limited to time
−T

2 ≤ t ≤ T
2 , the received signal, after pre-processing steps of downconversion and matched filtering, is as

follows:

r(t, θ) =
∫ ∫

x2+y2≤L

s(x, y; θ)e−jΩ(t)(x cos(θ)+y sin(θ))dxdy, (1)

with the spatial frequency variable Ω(t) = 2
c (2πfc + 2α(t − 2Rc

c )). In the discrete world, the backscattered
signal collected at discrete look angles θs is sampled at times ts to allow digital signal processing. In the time
interval of interest the spatial frequency Ω(t) varies in the range

(
2π
c fc − αT

2 , 2π
c fc + αT

2

)
. Typically, the time

sampling points ts are chosen such that spatial discrete frequencies Ω(ts) = 4π
c fs cover the whole range uniformly.

Assuming that the scene under surveillance consists of multitude of point scatterers at locations (xp, yp), the

(a) (b)

Figure 1. SAR spatial frequency support region at the center frequency fc = 10 GHz: (a) narrow-band, narrow-angle case
(B = 0.5GHz, ∆θ = 5o) and (b) narrow-band, wide-angle (B = 0.5GHz, ∆θ = 90o).

received signal can be written in discrete form as:

r(fs, θs) =
∑

p

s(xp, yp; θs)e−j 4πfs
c (xp cos(θs)+yp sin(θs)),

110



at a discrete frequency fs within bandwidth B and at a discrete aspect θs within an aperture of the extent
∆θ, with r(fs, θs) being commonly referred to as phase history. Note that the point scatterer model derived
above is the discrete approximation of the continuous superposition principle that relates phase history data to
continuous reflectivity field through the integral Equation 1.

Contrast between the spatial frequency support of the narrow-angle and wide-angle data collection is presented
in Figure 1. Due to the circular arch shape of the spatial frequency support, traditional polar format algorithm
is expected to perform poorly in the wide-angle collection scenario. Wide-angle problem is ill-posed, and direct
inversion techniques result in a number of artifacts. In the following section we outline our approach that aims
at joint space-aspect reconstruction of a scene viewed from wide aspect angles.

3. IMAGE FORMATION

We first define a wide angle SAR image as a set of aspect dependent spatial images. Due to the dependence of
the reflectivity response on the aspect of an impinging electromagnetic wave, there exists a reflectivity map of a
scene at each aspect. Assume that the ground scene is interrogated and reconstructed at a number of different
aspects, I. Denote the set of time observations at the aspect θi as rθi and denote the spatial reflectivity field at
the aspect θi, as sθi . In the discrete representation, at each aspect angle, Equation 1 reduces to a linear system
of equations of the form rθi = Φθisθi , where Φθi is the discrete representation of the SAR forward operator.
Overall we can write:

⎡

⎢
⎢⎢
⎣

rθ1

rθ2

...
rθI

⎤

⎥
⎥⎥
⎦

=

⎡

⎢
⎢⎢
⎣

Φθ1 0 . . . 0
0 Φθ2 . . . 0
...

...
...

...
0 . . . 0 ΦθI

⎤

⎥
⎥⎥
⎦

⎡

⎢
⎢⎢
⎣

sθ1

sθ2

...
sθI

⎤

⎥
⎥⎥
⎦

+ z. (2)

We can represent this relationship compactly as follows:

r = Φs + z (3)

where z is a random unknown vector modeling additive system noise, as well as any model mismatch errors.

Note that two comments are in order for the above set of equations. First, the equations represent in essence
a set of I independent systems of linear equations. Thus, hopes of any joint processing can not come from the
forward observation model, but rather from some sort of prior information that we have about the unknown
reflectivity field that we seek to reconstruct. Second, each individual problem rθi = Φθisθi is ill-conditioned.
The ill-conditioned discrete problems pose several issues in their own right, and typically some sort of prior
information is utilized to aid solution stabilization and potentially reduce non-observability of components that
lie in the null space of the forward operator.5

Under the point scattering assumption, the spatial reflectivity field at aspect i, sθi, is well modeled as a
spatially sparse set of reflectivity centers. Additionally, each point scatterer has a limited persistence over
azimuth, but within its persistence there exist a high correlation between scatterer magnitude responses to
excitations at closely spaced observation aspects. Combining these observations together, the reflectivity image
magnitudes |sθi | at discrete aspects i = {1, . . . , I} should be highly correlated, and yet allow for abrupt changes
in reflectivity on a subset of scatterers. Thus, in our reconstruction algorithm we seek to impose smoothness on
the point scatterer’s response in the azimuth direction, and sparsity across point scatterers in the spatial domain.

To form an image we take a cost or energy minimization approach, wherein we combine the physical obser-
vation model in (2) with a term capturing prior information:

ŝ = arg min
s

Jdata(r, s) + Jprior(s). (4)

For the data-fidelity term Jdata(r, s) we use the standard least square penalty, Jdata(r, s) = ‖r − Φs‖2
2.

We can capture the correlation in azimuth by penalizing the p-norm of the change in scattering magnitude
at each pixel from angle to angle. We can capture the spatial sparsity of scatterers by penalizing the q-norm of
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the total energy across aspect at each pixel6,7 . Denote the total number of pixels in a spatial image as N . We
use the following functional for the prior penalty term reflecting these insights:

Jprior(s) = α
N∑

n=1

I−1∑

i=1

||s(xn, yn, θi+1)| − |s(xn, yn, θi)||p

+β

N∑

n=1

⎡

⎣

√√√
√

I∑

i=1

|s(xn, yn, θi)|2
⎤

⎦

q

. (5)

Typically, we choose p < 1 and q < 1 to achieve desired sparsity6,7 .

Note that both regularization terms are applied explicitly to magnitudes |s| of the complex reflectivity field
s. The second regularization term involves a l2-norm computation which is naturally defined in terms of the
magnitudes of the complex field. The first term is also expressed as the function of the field’s magnitudes since
it has been observed that the backscatter power is very similar across closely spaced look angles. Thus, the
regularizing functional Jprior(s) is non-linear function of real and imaginary parts of the field.

A solution to the inversion problem is obtained by minimizing the cost function of Equation 4. For the case
when p = q = 1 the problem is convex and there exists a global, unique, solution. The minimization problem
is in fact a second-order cone problem, that can be effectively solved by commercially available solvers. In the
case when p < 1, q < 1, the convexity is lost and no local optimization algorithm can guarantee that it reaches
the global minimum. Optimal sparsity is reached for p = 0, but the problem is then NP hard and prohibitively
expensive for even moderate problem sizes. For p,q < 1 we use an iterative quasi-Newton method that is shown
to work well on this class of problems.8 An iterative algorithm used to find a minimizer of the cost function in
Equation 4 is given in Appendix.

The computational complexity of the optimization problem in Equation 4 grows with the number of observa-
tion/reconstruction aspects. However, there is an inherit flexibility in the problem formulation, which allows for
decoupling of the phase history collection aspects and the spatial field reconstruction aspects. This decoupling
is carried through by mapping several azimuth returns to one spatial image. In other words, the anisotropic
scattering assumption is relaxed to the isotropic within the small sub-aperture. Assume that {θ1, . . . θI} now rep-
resent reconstruction aspects. At the reconstruction angle θi we now collect K azimuth returns, i.e. {θ1

i , . . . θ
K
i }.

Thus,

rθi =

⎡

⎢
⎣

rθ1
i

...
rθK

i

⎤

⎥
⎦ , Φθi =

⎡

⎢
⎣

Φθ1
i

...
ΦθK

i

⎤

⎥
⎦ , (6)

where rθk
i

and Φθk
i

are the discrete returned signal and the discrete forward SAR operator at the observation
angle θk

i , respectively. The formality of the reconstruction algorithm in Equation 4 carries through unchanged
with the new meaning assigned to r,Φ and s.

Reduction of the number of reconstructed images poses a trade-off in between the computational complexity
and the problem ill-conditioning on one side and a possible model mismatch on the other side. By assigning
a small sub-aperture to each image, the degree of the ill-conditioning of a subproblem rθi = Φθisθi is reduced
by simply reducing a ratio of a number of measurements to a number unknowns. However, sub-aperture size
should be chosen carefully to reduce the model mismatch. From empirical data, researchers1 point out that the
response remains isotropic, or approximately constant for aspect angles as large as 20o. Thus one could apply
isotropic scattering on angular widths of a few degrees without considerably compromising the accuracy of the
model.

We emphasize the spatial geometry of the data collection, as well as aspect angles at which the spatial
reflectivity fields are being reconstructed on Figure 2. This figure shows a target in the coordinate center and
the aircraft’s circular trajectory at a large stand-off range, with phase history returns over small sub-apertures
tied to one spatial image.
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Figure 2. Wide-angle SAR data collection and reflectivity reconstruction geometry - the aircraft transmits pulses at the
ground patch from a circular trajectory and reflectivity fields of the ground patch are reconstructed at a discrete set of
aspects.

4. ALGORITHM ANALYSIS AND NUMERICAL SIMULATIONS

In this section we first analyze our algorithm on a synthetic data in order to derive some performance measures
impossible to obtain without knowledge of the ground truth. In the second part of this section we show reflectiv-
ity field reconstructions obtained by applying the algorithm to the Backhoe dataset, generated with the XPatch
simulator.9 In both cases, we contrast joint reconstruction with independent, point enhanced processing,2 ob-
tained by minimizing the cost function J(sθi) = ‖rθi − Φθisθi‖2

2 + β‖|sθi |‖q
q, ∀i ∈ {1, . . . , I}, where rθi and Φθi

are defined as before.

4.1 Performance metrics
In this section we outline performance measures used on experiments in a controlled environment to verify
reconstruction abilities of our algorithm. Namely, we contrast the joint reconstruction to the point-enhanced
and an ideal reconstruction (to be defined below) at a set of different signal-to-noise ratios. We compare quality
of reconstruction in terms of two performance measures: relative mean squared error (RMSE) and percentage
of correctly identified support. We introduce the ideal reconstruction to obtain a lower bound on relative mean
squared error.

The relative mean squared error is defined as RMSE = ‖ŝ−s0‖2
2

‖s0‖2
2

, where ŝ is a solution to an optimization
problem, either joint or independent reconstruction, and s0 is the true underlying object. The second performance
measure is a discrepancy between the ground truth support set T = supp{s0} and a support set of a reconstructed
image T̂ . The support set T̂ differs form the true support set T two ways: an algorithm can introduce spurious
pixel responses outside of the support set T (false alarms), or it can miss to identify a pixel in the support set
T (missed detection). Due to the presence of noise, the set T̂ actually spreads across the whole spatial image.
In order to bound the set T̂ , one would need to threshold pixel’s magnitudes below γσ to zero. The parameter
γ defines a propagation of the input noise with standard deviation σ into the solution through an optimization
algorithm. Instead of following this route further, we resort to a simple measure of the percentage of |T | largest
components of the solution ŝ that belong to the set T .

As a baseline for RMSE comparison, we define the ideal reconstruction as a reconstruction obtained by an
algorithm that assumes that a spatial support is available and known at the receiver through an oracle. With
the oracle help, one can a priori set all pixel values outside the signal support to zero and hand-pick the columns
of the operator Φ that correspond to pixels carrying the signal. The system reduces to

r = ΦT sT + z
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where ΦT is equivalent to the original matrix Φ with appropriately pruned columns. The new signal sT has
the dimension |T |, much smaller then the original signal s dimension N . We also assume that the size of the
measurement vector r is M , such that M > |T |. In other words, with the oracle help the problem of tackling
the ill-posed inverse problem becomes a classical problem of parameter estimation in Gaussian white noise. The
optimal maximum likelihood solution is equivalent to a least squares solution given by:

ŝT = (Φ∗
T ΦT )−1Φ∗

T r.

Its expected mean square error is given by the formula

E‖ŝT − sT ‖2
2 = E‖(Φ∗

TΦT )−1Φ∗
T z‖2

2 = σ2Tr((Φ∗
T ΦT )−1), (7)

where σ2 is noise variance and the corresponding RMSE is readily derived.

Clearly the error achieved by the ideal reconstruction is a function of the matrix ΦT which in turn depends
on the signal itself and number of parameters at which the system operates. Most notably, it depends on the
number of measurements per image as well as the width of the viewing aperture corresponding to one image.
Additionally, it depends on the distance between spatial pixels, i.e. resolution. Note that although we call
this reconstruction ideal because of the oracle assistance, this reconstruction is not optimal in the sense of an
achievable minimal mean square error. For the optimal reconstruction one should not assume that estimating
on the true support of s0 achieves the minimal error. This follows by simply noting that if k-th component of
the unknown s0 is such that its response is buried in the noise |(s0)k| < γσ, the smaller mean square error would
be achieved by simply not estimating (s0)k, i.e. by setting it to zero.10 However, the optimal approach quickly
becomes computationally intractable since it requires finding a least squares solution to r = Φ′

T s′T + z for each
set T ′ with support T ′ ⊂ T . The optimal reconstruction is then achieved by a LS estimator among the set of LS
estimators that has the minimal relative mean square error.

4.2 Synthetic Example

The synthetic example is described as follows. We assume that a scene consists of a set of anisotropic point
scatterers, i.e. a set of point scatterers reflecting non-uniformly over different aspect angles. In particular, we
construct a synthetic example, pertinent to wide-angle SAR, where we are interested in uncovering a set of
lexicographically ordered sparse images with two properties. First, the spatial support of any two consecutive
images in the set is highly correlated and second, responses at active pixel locations across the whole set of
images have limited persistence. We model an azimuth response of each active pixel as a first order Markov
chain with two states: zero response and non-zero response state. Non-zero response state is modeled as a first
order autoregressive process. Note that a tacit and important assumption in this study is that each image is
sparse. Typical spatial 16×16 pixel reflectivity images are shown in Figure 3. Sparsity of the ground truth image
is 5%. Each image corresponds to a sub-aperture of 1o. In each sub-aperture, chirp pulses interrogate the scene
with 8 viewing angles and 16 frequencies over 500MHz bandwidth. Thus, we seek to uncover 256 unknown pixel
responses of each image with 128 measurements per spatial image. Pixel range and cross-range resolutions are
set to 0.3m. From the system parameters the predicted range and cross-range resolutions are 0.3m and 0.85m,
respectively. We run the optimization algorithm in both joint processing and independent, point enhanced mode.
Regularization parameters are optimized in each mode independently.

In Figure 4 we compare the performance when the set of 20 spatial images is reconstructed by joint pro-
cessing of all images to the reconstruction of independent-point enhanced processing. In the point-enhanced
reconstruction case, the RMSE is calculated by concatenating all separately reconstructed spatial images at
different aspects into one vector and applying the RMSE formula. RMSEs achieved by these approaches as
a function of signal to noise ratio is given in Figure 4(a). Theoretically predicted performance with the oracle
assistance is plotted as the baseline for comparison. These results indicate that joint processing of spatial images
that have highly correlated spatial support considerably reduces the error over the independent point-enhanced
processing and significantly reduces the gap to ideal reconstruction.

An evaluation of the techniques in terms of correctly identified support is given in Figure 4(b). These results
indicates that joint processing achieves better noise suppression. This point is further exemplified in Figure 5
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Figure 3. Typical ground truth images at three consecutive aspect angles: (a) 0o, (b) 1o and (c) 2o.
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Figure 4. (a) Average relative mean square error as a function of signal to noise ratio (SNR) for 20 Monte Carlo runs
with 8 phase history aspects per one spatial image, (b) percentage of correctly identified support and (c) average RMSE
sensitivity to number of measurements per one 16 × 16 spatial image.

where we visually compare different pixel errors when averaged across azimuth. As expected, joint processing
strongly suppresses errors outside set T , whereas noise level outside the set T is increased for independent point
enhanced processing. Typical anisotropic responses and their reconstructions of several pixels over a full range of
20 aspect angles are shown in Figure 6. Independent reconstruction introduces spurious responses at ’non-active’
pixel locations and at times it misses to identify certain azimuth responses. Noise floor of pixels in the set T
that have zero response at certain azimuths is typically smaller for the independent reconstruction (the top row
of Figure 6). On the other hand, noise floor at pixels in the complement set T c is smaller for joint processing
(the last two figures in the bottom row of Figure 6). This is an expected behavior as joint processing explicitly
imposes sparsity on pixels in the set T c.

In Figure 4(c) we show the SAR sensor matrix sensitivity to reduction in the number of observation aspects.
Azimuth returns are subsampled uniformly at random, such there is the same number of measurements in each
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Figure 5. (a) Average spatial magnitude of reflectivity response over azimuth for the sample ground truth, (b) average
spatial error over azimuth for joint processing and (c) average spatial error over azimuth for independent processing
(SNR = 20dB).
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Figure 6. Reflectivity magnitude vs azimuth for several sample pixels in the support set T (top row) and the set T c

(bottom row). Note that pixels in the set T c have zero true response.

sub-aperture. From a theoretical point of view and under certain assumptions on a linear forward operator, the
number of measurements needed to reconstruct a sparse signal is proportional to its support size, rather that
its cardinality.11 The result in Figure 4(c) indicates that SAR forward operator Φ falls into the category of
operators that allow for measurement compression, i.e. there is no cost in the achieved RMSE for the wide
range of azimuth sub-sampled measurements.

4.3 Backhoe Xpatch data set reconstruction

In this section we present imaging results based on a backhoe dataset, generated by the XPatch simulator.9

The CAD model of the backhoe is given on Figure 7(a). The phase history data are collected over ∆θ = 110o

azimuths in the range [−10o, 100o] at 30o elevation, with the frequency bandwidth B = 500MHz around the
center frequency fc = 10GHz. The reconstruction grid is chosen such that one 128 × 128 spatial image is
reconstructed every 5o. Thus, there are total of 22 jointly reconstructed images corresponding to 22 consecutive,
non-overlapping viewing aspects.

First, we apply the traditional polar-format algorithm on phase history over the full range of aspects and
reconstruct one image, Figure 7(b). Polar format algorithm is implemented by applying 1-D range resampling,
followed by 1-D azimuth resampling.4 In order to avoid ringing in the spatial domain due to limited bandwidth
in spatial frequency (wavenumber) domain, we apply Taylor windowing on the resampled data before taking the
2-D inverse Fourier transform. Taylor window is specified by 4 nearly constant-level sidelobes adjacent to the
mainlobe and −35dB sidelobe suppression below the mainlobe level.

Due to visualization constraints we first present a composite WSAR image obtained by independent-point
enhanced processing in Figure 7(c) and the composite image obtained by joint processing in Figure 7(d).
The composite image is defined as an image of maximum pixel reflectivity magnitudes across all azimuths.2

This simple metric aims at finding the peak response across all viewing angles of a spatial pixel (xn, yn), i.e.
max{|s(xn, yn, θi)|, i = 1, . . . , I}2 . Note that these images are plotted in dB scale, by first thresholding small
values to zero at the same threshold level for both joint and independent reconstructions. The composite image
results show the backhoe’s reflectivity in much finer detail when compared to results of polar format algorithm
applied to the full aperture data. Spatial support of the jointly reconstructed composite image is much smaller
and only the dominant features are reconstructed. Independent reconstructions also identify dominant features
similarly, however some spurious scatterers appear to be present in the reconstructed image.

Next, in Figure 8 we present magnitudes of the backhoe’s spatial reflectivity when viewed from several
consecutive reconstruction angles. Joint and independent, point-enhanced processing produce better focused
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Figure 7. (a) The backhoe CAD model, (b) polar format algorithm applied on the full aperture of 110o and composite
images of (c) independent, point-enhanced reconstruction (q = .8, β = .1) and (d) joint reconstruction (p = .8, α = .05, q =
.8, β = .1) of 22 images each corresponding to a sub-aperture of 5o.
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Figure 8. Three sample reconstructed SAR images each of 5o width with maximum number of measurements. Columns
left to right correspond to images centered at −7.5o, −2.5o, 2.5o, 7.5o degrees azimuth. Rows correspond to polar format
with Taylor windowing reconstruction (top row), independent (middle row) and joint processing (bottom row).

imagery, whereas a noticeable point spreading is visible at the images reconstructed by the polar format algorithm.
Joint and independent reconstructions are plotted on the same dB scale. Independent reconstruction yields larger
magnitude responses, i.e. point-enhancing, while joint processing produces images with more compact spatial
support. Contrasting independent and joint reconstructions of the first three columns of Figure 8, we see smoother
change in reflectivities over angle in the joint processing result.

Figure 9 shows reconstructed reflectivity shapes as a function of azimuth for a set of sample pixels. As
expected, reflectivity aspect signature has limited persistence, with high correlation over small aspect extents.
The fine detail provided in these plots allows for a scattering center feature extraction. For example, scatterers
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Figure 9. Magnitude of reflectivity response over full range of aspects for several sample pixels.

Figure 10. Quiver plot indicating aspect angle of the maximum scattering magnitude response.

such as flat, metal plates have glint anisotropy that is very thin in azimuth, whereas flag and metal poles act
as isotropic point scatters. Note that joint processing typically produces smooth scattering shapes, whereas
independent processing reconstructs shapes that are jittery. Similarly to the synthetic example, a noise floor in
azimuth direction, at point scatterer locations, appears somewhat elevated in the case of joint processing.

In Figure 10 we present a quiver plot indicating aspect angle of the maximum scattering magnitude response.

In Figure 11 we show a set of composite image reconstructions for a sparse collection aperture. In particular,
for joint and independent processing the sparse aperture is defined as azimuth subsampled phase history returns.
Phase history azimuths within each sub-aperture, i.e. for each image, are chosen uniformly at random among
full set of azimuth returns such that each image has equal number of measurements. In contrast, subsampling
for the polar format algorithm is performed uniformly, but non-random to aid range and azimuth resampling
of the phase history returns. Random downsampling with polar format reconstructions produces much worse
results and we omit presenting these plots. We first see that the quality of the composite reflectivity image
reconstruction is weakly dependent on the number of azimuth measurements. Joint and independent processing
appear more robust when compared to polar format reconstructions. As the subsampling drops down to 35%,
independent, point-enhanced processing tends to increase a number of spurious point scatterers , whereas spatial
support for joint processing remains focused with further point sharpening.
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Figure 11. Composite WSAR images with azimuth phase history returns sub-sampled at (a) 100%, (b) 70%, (c) 50%
and (d) 35% of the maximum number of available azimuth measurements. Composite images correspond to polar format
algorithm with and without Taylor windowing(top two rows), independent, point enhanced processing (third row) and
joint processing (bottom row).

5. CONCLUSION

We have approached wide-angle SAR reflectivity reconstruction as a three-dimensional inverse problem exploiting
the fact that spatial reflectivity fields are sparse and that their magnitudes are smooth with fast transitions at
random aspect angles. This approach allows for anisotropic reflectivity characterization without the need for
detailed prior knowledge of azimuth persistence or scattering type. We have shown that this algorithm produces
better focused imagery on Xpatch Backhoe data set when compared to traditional polar format algorithm.
Algorithms that can finely characterize anisotropy of the scene’s reflectivity field, provide a path for moving from
pixel-based imaging to object level information extraction. This information can be tied to higher processing
blocks that perform e.g. automatic target recognition (ATR). Furthermore, reconstruction quality exhibits
robustness to limitations in data quantity, leaving room for a spotlight SAR sensor to multiplex interrogation of
more than one ground scene during phase history collection.
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APPENDIX A. ALGORITHM

The solution to the minimization problem can be obtain multiple ways and here we present an algorithm based
on a quasi-Newton method. For general 0 ≤ p ≤ 1, the lp norm is non-differentiable around the origin. In the
first step, any lp norm is approximated by a smooth function ‖z‖p

p ≈ ∑K
i=1((zi)2 + ε)

p
2 . The gradient can be

written in compact form:

∆Jε(s) = H(s)s − 2ΦHr (8)

where Hessian approximation H(s) is given by:

H(s) = 2ΦHΦ + pαPH(s)DT
θ Λ1(s)DθP (s) + qβΛ(s)

Λ1(s) = diag{‖(Dθ|s|)k‖2 + ε)p/2−1}
Dθ = diag{[−I, I]}

P (s) = diag{exp(−j∠(s)k)}

Λ(s) = diag{diag{(
I∑

i=1

|s(xn, yn, θi|2 + ε)q/2−1})}

The quasi-Newton solution at iteration m is

ŝ(m+1) = ŝ(m) − δ[H(ŝ(m))]−1∆Jε(ŝ(m)), (9)

where δ controls a size of the quasi-Newton step. Substituting the gradient of the cost function given in Equa-
tion 8, the quasi-Newton iteration is given by

H(ŝ(m))ŝ(m+1) = (1 − δ)H(ŝ(m))ŝ(m) + δ2ΦHr. (10)

Note that this a linear set of equations with the unknown ŝ(m+1) and the right hand side recalculated at each
iteration. This system can be solved itself iteratively by for example, a conjugate gradient method.
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